IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v211y2020ics0360544220320739.html
   My bibliography  Save this article

Pyrolysis of furfural residue in a bubbling fluidized bed reactor: Biochar characterization and analysis

Author

Listed:
  • Liu, Yang
  • Song, Yongmeng
  • Ran, Chunmei
  • Siyal, Asif Ali
  • Chtaeva, Polina
  • Dai, Jianjun
  • Jiang, Zhihui
  • Deng, Zeyu
  • Zhang, Tianhao
  • Ao, Wenya
  • Fu, Jie

Abstract

The pyrolysis characteristic of furfural residue (FR) was investigated in a fluidized bed reactor. The yield of biochar (BC) decreased whereas non-condensable gas yield increased with increasing temperature from 450 °C to 850 °C. The minimum BC yield (41.67 wt%) was found with addition of kaolin at 650 °C, while the maximum non-condensable gas yield (48.00 wt%) was obtained at 850 °C without additives. Furthermore, the maximum condensate yield (20.63 wt%) was observed at 650 °C with Ca-bentonite addition. Both Ca-bentonite and kaolin decreased the BC yield, while CaO promoted the BC yield. The contents of carbon, nitrogen and sulfur in BC were enriched at different temperatures. Ca-bentonite, kaolin and CaO resulted in more amount of protrusions on the BC surface and improved BC pore structures. Iodine and methylene blue adsorption values of BC were higher than that of FR and the maximum iodine adsorption value (279.6 mg/g) was obtained at 650 °C without additives. CaO remarkably increased methylene blue adsorption value, reaching the maximum value of 168.7 mg/g at 450 °C. A possible formation pathway of BC during FR pyrolysis was also proposed.

Suggested Citation

  • Liu, Yang & Song, Yongmeng & Ran, Chunmei & Siyal, Asif Ali & Chtaeva, Polina & Dai, Jianjun & Jiang, Zhihui & Deng, Zeyu & Zhang, Tianhao & Ao, Wenya & Fu, Jie, 2020. "Pyrolysis of furfural residue in a bubbling fluidized bed reactor: Biochar characterization and analysis," Energy, Elsevier, vol. 211(C).
  • Handle: RePEc:eee:energy:v:211:y:2020:i:c:s0360544220320739
    DOI: 10.1016/j.energy.2020.118966
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220320739
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118966?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Safar, Michal & Lin, Bo-Jhih & Chen, Wei-Hsin & Langauer, David & Chang, Jo-Shu & Raclavska, H. & Pétrissans, Anélie & Rousset, Patrick & Pétrissans, Mathieu, 2019. "Catalytic effects of potassium on biomass pyrolysis, combustion and torrefaction," Applied Energy, Elsevier, vol. 235(C), pages 346-355.
    2. Van de Velden, Manon & Baeyens, Jan & Brems, Anke & Janssens, Bart & Dewil, Raf, 2010. "Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction," Renewable Energy, Elsevier, vol. 35(1), pages 232-242.
    3. Manara, P. & Zabaniotou, A., 2012. "Towards sewage sludge based biofuels via thermochemical conversion – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2566-2582.
    4. Kan, Tao & Strezov, Vladimir & Evans, Tim J., 2016. "Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1126-1140.
    5. Mao, Xiao & Kang, Qinhao & Liu, Yang & Siyal, Asif Ali & Ao, Wenya & Ran, Chunmei & Fu, Jie & Deng, Zeyu & Song, Yongmeng & Dai, Jianjun, 2019. "Microwave-assisted pyrolysis of furfural residue in a continuously operated auger reactor: Biochar characterization and analysis," Energy, Elsevier, vol. 168(C), pages 573-584.
    6. Liu, Yang & Ran, Chunmei & Siddiqui, Azka R. & Mao, Xiao & Kang, Qinhao & Fu, Jie & Deng, Zeyu & Song, Yongmeng & Jiang, Zhihui & Zhang, Tianhao & Ao, Wenya & Dai, Jianjun, 2018. "Pyrolysis of textile dyeing sludge in fluidized bed: Characterization and analysis of pyrolysis products," Energy, Elsevier, vol. 165(PA), pages 720-730.
    7. Ubando, Aristotle T. & Chen, Wei-Hsin & Ong, Hwai Chyuan, 2019. "Iron oxide reduction by graphite and torrefied biomass analyzed by TG-FTIR for mitigating CO2 emissions," Energy, Elsevier, vol. 180(C), pages 968-977.
    8. Williams, Paul T & Nugranad, Nittaya, 2000. "Comparison of products from the pyrolysis and catalytic pyrolysis of rice husks," Energy, Elsevier, vol. 25(6), pages 493-513.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muzyka, Roksana & Misztal, Edyta & Hrabak, Joanna & Banks, Scott W. & Sajdak, Marcin, 2023. "Various biomass pyrolysis conditions influence the porosity and pore size distribution of biochar," Energy, Elsevier, vol. 263(PE).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ong, Hwai Chyuan & Chen, Wei-Hsin & Farooq, Abid & Gan, Yong Yang & Lee, Keat Teong & Ashokkumar, Veeramuthu, 2019. "Catalytic thermochemical conversion of biomass for biofuel production: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    2. Mohsin Raza & Abrar Inayat & Ashfaq Ahmed & Farrukh Jamil & Chaouki Ghenai & Salman R. Naqvi & Abdallah Shanableh & Muhammad Ayoub & Ammara Waris & Young-Kwon Park, 2021. "Progress of the Pyrolyzer Reactors and Advanced Technologies for Biomass Pyrolysis Processing," Sustainability, MDPI, vol. 13(19), pages 1-42, October.
    3. Primaz, Carmem T. & Ribes-Greus, Amparo & Jacques, Rosângela A., 2021. "Valorization of cotton residues for production of bio-oil and engineered biochar," Energy, Elsevier, vol. 235(C).
    4. Fan, Yongsheng & Zhao, Weidong & Shao, Shanshan & Cai, Yixi & Chen, Yuwei & Jin, Lizhu, 2018. "Promotion of the vapors from biomass vacuum pyrolysis for biofuels under Non-thermal Plasma Synergistic Catalysis (NPSC) system," Energy, Elsevier, vol. 142(C), pages 462-472.
    5. Andrew N. Amenaghawon & Chinedu L. Anyalewechi & Charity O. Okieimen & Heri Septya Kusuma, 2021. "Biomass pyrolysis technologies for value-added products: a state-of-the-art review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14324-14378, October.
    6. Syed-Hassan, Syed Shatir A. & Wang, Yi & Hu, Song & Su, Sheng & Xiang, Jun, 2017. "Thermochemical processing of sewage sludge to energy and fuel: Fundamentals, challenges and considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 888-913.
    7. Juan Luis Aguirre & Juan Baena & María Teresa Martín & Leonor Nozal & Sergio González & José Luis Manjón & Manuel Peinado, 2020. "Composition, Ageing and Herbicidal Properties of Wood Vinegar Obtained through Fast Biomass Pyrolysis," Energies, MDPI, vol. 13(10), pages 1-17, May.
    8. Xue, Junjie & Chellappa, Thiago & Ceylan, Selim & Goldfarb, Jillian L., 2018. "Enhancing biomass + coal Co-firing scenarios via biomass torrefaction and carbonization: Case study of avocado pit biomass and Illinois No. 6 coal," Renewable Energy, Elsevier, vol. 122(C), pages 152-162.
    9. Nabila, Rakhmawati & Hidayat, Wahyu & Haryanto, Agus & Hasanudin, Udin & Iryani, Dewi Agustina & Lee, Sihyun & Kim, Sangdo & Kim, Soohyun & Chun, Donghyuk & Choi, Hokyung & Im, Hyuk & Lim, Jeonghwan &, 2023. "Oil palm biomass in Indonesia: Thermochemical upgrading and its utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    10. Kan, Tao & Strezov, Vladimir & Evans, Tim & He, Jing & Kumar, Ravinder & Lu, Qiang, 2020. "Catalytic pyrolysis of lignocellulosic biomass: A review of variations in process factors and system structure," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    11. Salimi, Pejman & Norouzi, Omid & Pourhoseini, S.E.M. & Bartocci, Pietro & Tavasoli, Ahmad & Di Maria, Francesco & Pirbazari, S.M. & Bidini, Gianni & Fantozzi, Francesco, 2019. "Magnetic biochar obtained through catalytic pyrolysis of macroalgae: A promising anode material for Li-ion batteries," Renewable Energy, Elsevier, vol. 140(C), pages 704-714.
    12. Cai, Junmeng & Xu, Di & Dong, Zhujun & Yu, Xi & Yang, Yang & Banks, Scott W. & Bridgwater, Anthony V., 2018. "Processing thermogravimetric analysis data for isoconversional kinetic analysis of lignocellulosic biomass pyrolysis: Case study of corn stalk," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2705-2715.
    13. Nasir Uddin, Md. & Daud, W.M.A. Wan & Abbas, Hazim F., 2013. "Potential hydrogen and non-condensable gases production from biomass pyrolysis: Insights into the process variables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 204-224.
    14. Tayibi, S. & Monlau, F. & Bargaz, A. & Jimenez, R. & Barakat, A., 2021. "Synergy of anaerobic digestion and pyrolysis processes for sustainable waste management: A critical review and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    15. Mohsin Raza & Abrar Inayat & Basim Abu-Jdayil, 2021. "Crude Glycerol as a Potential Feedstock for Future Energy via Thermochemical Conversion Processes: A Review," Sustainability, MDPI, vol. 13(22), pages 1-27, November.
    16. Pérez, Alejandro & Ruiz, Begoña & Fuente, Enrique & Calvo, Luis Fernando & Paniagua, Sergio, 2021. "Pyrolysis technology for Cortaderia selloana invasive species. Prospects in the biomass energy sector," Renewable Energy, Elsevier, vol. 169(C), pages 178-190.
    17. Zhou, Chunbao & Zhang, Yingwen & Liu, Yang & Deng, Zeyu & Li, Xiangtong & Wang, Long & Dai, Jianjun & Song, Yongmeng & Jiang, Zhihui & Qu, Junshen & Siyal, Asif Ali, 2021. "Co-pyrolysis of textile dyeing sludge and red wood waste in a continuously operated auger reactor under microwave irradiation," Energy, Elsevier, vol. 218(C).
    18. Peters, Jens F. & Banks, Scott W. & Bridgwater, Anthony V. & Dufour, Javier, 2017. "A kinetic reaction model for biomass pyrolysis processes in Aspen Plus," Applied Energy, Elsevier, vol. 188(C), pages 595-603.
    19. Wang, Chengxin & Bi, Haobo & Lin, Qizhao & Jiang, Xuedan & Jiang, Chunlong, 2020. "Co-pyrolysis of sewage sludge and rice husk by TG–FTIR–MS: Pyrolysis behavior, kinetics, and condensable/non-condensable gases characteristics," Renewable Energy, Elsevier, vol. 160(C), pages 1048-1066.
    20. Marchese, Liziane & Kühl, Kauany Inaiê Pelizari & da Silva, Jean Constantino Gomes & Mumbach, Guilherme Davi & Alves, Ricardo Francisco & Alves, José Luiz Francisco & Domenico, Michele Di, 2024. "Exploring bioenergy prospects from malt bagasse: Insights through pyrolysis with multi-component kinetic analysis and thermodynamic parameter estimation," Renewable Energy, Elsevier, vol. 226(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:211:y:2020:i:c:s0360544220320739. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.