IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v169y2021icp178-190.html
   My bibliography  Save this article

Pyrolysis technology for Cortaderia selloana invasive species. Prospects in the biomass energy sector

Author

Listed:
  • Pérez, Alejandro
  • Ruiz, Begoña
  • Fuente, Enrique
  • Calvo, Luis Fernando
  • Paniagua, Sergio

Abstract

Cortaderia selloana (CS), is an invasive and exotic species that is generating significant invasive problems in the Iberian Peninsula ecosystems. The objective of this research was to study this plant potential thorough a pyrolytic process helping to reduce its expansion. Stems and leaves were subjected to conventional and flash pyrolysis. These processes were carried out in an original design oven using a 25 °C/min heating ramp at a 750 °C temperature and during 60 min at the pyrolysis temperature for conventional pyrolysis and with 750 °C and 850 °C pyrolysis temperatures for flash. Gas-fraction obtained by flash pyrolysis had higher HHV data when compared with conventional ones (∼17 MJ/kg vs ∼5 MJ/kg) due to their less CO2 and higher CO, CH4 and H2. The greater bio-oil yield was obtained for CSS-P (33.58%). The composition of conventional pyrolysis bio-oils had an overbearing of nonaromatic and monoaromatic hydrocarbons nature whereas bio-oils from flash pyrolysis were composed mainly of polycyclic aromatic hydrocarbons. Bio-char fraction was higher in CSL than CSS with HHV similar to lignite and bituminous coals (22.74–29.12 MJ/kg). After done the quantification and characterization of the fractions, it was concluded that a possible energetic valorization of Cortaderia selloana biomass was possible.

Suggested Citation

  • Pérez, Alejandro & Ruiz, Begoña & Fuente, Enrique & Calvo, Luis Fernando & Paniagua, Sergio, 2021. "Pyrolysis technology for Cortaderia selloana invasive species. Prospects in the biomass energy sector," Renewable Energy, Elsevier, vol. 169(C), pages 178-190.
  • Handle: RePEc:eee:renene:v:169:y:2021:i:c:p:178-190
    DOI: 10.1016/j.renene.2021.01.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121000215
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.01.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bogdan Saletnik & Grzegorz Zagula & Marcin Bajcar & Maria Czernicka & Czeslaw Puchalski, 2018. "Biochar and Biomass Ash as a Soil Ameliorant: The Effect on Selected Soil Properties and Yield of Giant Miscanthus (Miscanthus x giganteus)," Energies, MDPI, vol. 11(10), pages 1-24, September.
    2. Kan, Tao & Strezov, Vladimir & Evans, Tim J., 2016. "Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1126-1140.
    3. Saadi, W. & Rodríguez-Sánchez, S. & Ruiz, B. & Souissi-Najar, S. & Ouederni, A. & Fuente, E., 2019. "Pyrolysis technologies for pomegranate (Punica granatum L.) peel wastes. Prospects in the bioenergy sector," Renewable Energy, Elsevier, vol. 136(C), pages 373-382.
    4. Ferla, G. & Caputo, P. & Colaninno, N. & Morello, E., 2020. "Urban greenery management and energy planning: A GIS-based potential evaluation of pruning by-products for energy application for the city of Milan," Renewable Energy, Elsevier, vol. 160(C), pages 185-195.
    5. Grzegorz Zając & Joanna Szyszlak-Bargłowicz & Wojciech Gołębiowski & Małgorzata Szczepanik, 2018. "Chemical Characteristics of Biomass Ashes," Energies, MDPI, vol. 11(11), pages 1-15, October.
    6. Daniele Castello & Birgit Rolli & Andrea Kruse & Luca Fiori, 2017. "Supercritical Water Gasification of Biomass in a Ceramic Reactor: Long-Time Batch Experiments," Energies, MDPI, vol. 10(11), pages 1-17, October.
    7. Veronika Chaloupková & Tatiana Ivanova & Ondřej Ekrt & Abraham Kabutey & David Herák, 2018. "Determination of Particle Size and Distribution through Image-Based Macroscopic Analysis of the Structure of Biomass Briquettes," Energies, MDPI, vol. 11(2), pages 1-13, February.
    8. Dhyani, Vaibhav & Bhaskar, Thallada, 2018. "A comprehensive review on the pyrolysis of lignocellulosic biomass," Renewable Energy, Elsevier, vol. 129(PB), pages 695-716.
    9. Williams, Paul T & Nugranad, Nittaya, 2000. "Comparison of products from the pyrolysis and catalytic pyrolysis of rice husks," Energy, Elsevier, vol. 25(6), pages 493-513.
    10. Kaczor, Zuzanna & Buliński, Zbigniew & Werle, Sebastian, 2020. "Modelling approaches to waste biomass pyrolysis: a review," Renewable Energy, Elsevier, vol. 159(C), pages 427-443.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Julia Karaeva & Svetlana Timofeeva & Marat Gilfanov & Marina Slobozhaninova & Olga Sidorkina & Ekaterina Luchkina & Vladimir Panchenko & Vadim Bolshev, 2023. "Exploring the Prospective of Weed Amaranthus retroflexus for Biofuel Production through Pyrolysis," Agriculture, MDPI, vol. 13(3), pages 1-19, March.
    2. Wei, Rufei & Meng, Kangzheng & Long, Hongming & Xu, ChunbaoCharles, 2024. "Biomass metallurgy: A sustainable and green path to a carbon-neutral metallurgical industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. N. Uddin & Kuaanan Techato & Juntakan Taweekun & Md Mofijur Rahman & M. G. Rasul & T. M. I. Mahlia & S. M. Ashrafur, 2018. "An Overview of Recent Developments in Biomass Pyrolysis Technologies," Energies, MDPI, vol. 11(11), pages 1-24, November.
    2. Ascher, Simon & Watson, Ian & You, Siming, 2022. "Machine learning methods for modelling the gasification and pyrolysis of biomass and waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    3. Kumar, R. & Strezov, V., 2021. "Thermochemical production of bio-oil: A review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    4. Elżbieta Jarosz-Krzemińska & Joanna Poluszyńska, 2020. "Repurposing Fly Ash Derived from Biomass Combustion in Fluidized Bed Boilers in Large Energy Power Plants as a Mineral Soil Amendment," Energies, MDPI, vol. 13(18), pages 1-21, September.
    5. Liza Nuriati Lim Kim Choo & Osumanu Haruna Ahmed & Nik Muhamad Nik Majid & Zakry Fitri Abd Aziz, 2021. "Pineapple Residue Ash Reduces Carbon Dioxide and Nitrous Oxide Emissions in Pineapple Cultivation on Tropical Peat Soils at Saratok, Malaysia," Sustainability, MDPI, vol. 13(3), pages 1-23, January.
    6. Hu, Xun & Gholizadeh, Mortaza, 2020. "Progress of the applications of bio-oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    7. Bhoi, P.R. & Ouedraogo, A.S. & Soloiu, V. & Quirino, R., 2020. "Recent advances on catalysts for improving hydrocarbon compounds in bio-oil of biomass catalytic pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    8. Md Sumon Reza & Zhanar Baktybaevna Iskakova & Shammya Afroze & Kairat Kuterbekov & Asset Kabyshev & Kenzhebatyr Zh. Bekmyrza & Marzhan M. Kubenova & Muhammad Saifullah Abu Bakar & Abul K. Azad & Hrido, 2023. "Influence of Catalyst on the Yield and Quality of Bio-Oil for the Catalytic Pyrolysis of Biomass: A Comprehensive Review," Energies, MDPI, vol. 16(14), pages 1-39, July.
    9. Hongbo Du, & Deng, Fang & Kommalapati, Raghava R. & Amarasekara, Ananda S., 2020. "Iron based catalysts in biomass processing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    10. Salimi, Pejman & Norouzi, Omid & Pourhoseini, S.E.M. & Bartocci, Pietro & Tavasoli, Ahmad & Di Maria, Francesco & Pirbazari, S.M. & Bidini, Gianni & Fantozzi, Francesco, 2019. "Magnetic biochar obtained through catalytic pyrolysis of macroalgae: A promising anode material for Li-ion batteries," Renewable Energy, Elsevier, vol. 140(C), pages 704-714.
    11. Alexandre Tisserant & Francesco Cherubini, 2019. "Potentials, Limitations, Co-Benefits, and Trade-Offs of Biochar Applications to Soils for Climate Change Mitigation," Land, MDPI, vol. 8(12), pages 1-34, November.
    12. Tianyou Chen & Honglei Jia & Shengwei Zhang & Xumin Sun & Yuqiu Song & Hongfang Yuan, 2020. "Optimization of Cold Pressing Process Parameters of Chopped Corn Straws for Fuel," Energies, MDPI, vol. 13(3), pages 1-21, February.
    13. Song, Gongxiang & Huang, Dexin & Li, Hanjian & Wang, Xuepeng & Ren, Qiangqiang & Jiang, Long & Wang, Yi & Su, Sheng & Hu, Song & Xiang, Jun, 2022. "Pyrolysis reaction mechanism of typical Chinese agriculture and forest waste pellets at high heating rates based on the photo-thermal TGA," Energy, Elsevier, vol. 244(PB).
    14. Kumar, R. & Strezov, V. & Weldekidan, H. & He, J. & Singh, S. & Kan, T. & Dastjerdi, B., 2020. "Lignocellulose biomass pyrolysis for bio-oil production: A review of biomass pre-treatment methods for production of drop-in fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    15. Cristina Moliner & Filippo Marchelli & Elisabetta Arato, 2020. "Current Status of Energy Production from Solid Biomass in North-West Italy," Energies, MDPI, vol. 13(17), pages 1-29, August.
    16. Marcin Landrat & Mamo T. Abawalo & Krzysztof Pikoń & Roman Turczyn, 2022. "Bio-Oil Derived from Teff Husk via Slow Pyrolysis Process in Fixed Bed Reactor and Its Characterization," Energies, MDPI, vol. 15(24), pages 1-13, December.
    17. García, R. & Gil, M.V. & Fanjul, A. & González, A. & Majada, J. & Rubiera, F. & Pevida, C., 2021. "Residual pyrolysis biochar as additive to enhance wood pellets quality," Renewable Energy, Elsevier, vol. 180(C), pages 850-859.
    18. Izabella Maj & Krzysztof Matus, 2023. "Aluminosilicate Clay Minerals: Kaolin, Bentonite, and Halloysite as Fuel Additives for Thermal Conversion of Biomass and Waste," Energies, MDPI, vol. 16(11), pages 1-17, May.
    19. Yang, Yuhan & Wang, Tiancheng & Hu, Hongyun & Yao, Dingding & Zou, Chan & Xu, Kai & Li, Xian & Yao, Hong, 2021. "Influence of partial components removal on pyrolysis behavior of lignocellulosic biowaste in molten salts," Renewable Energy, Elsevier, vol. 180(C), pages 616-625.
    20. Primaz, Carmem T. & Ribes-Greus, Amparo & Jacques, Rosângela A., 2021. "Valorization of cotton residues for production of bio-oil and engineered biochar," Energy, Elsevier, vol. 235(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:169:y:2021:i:c:p:178-190. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.