IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v122y2018icp152-162.html
   My bibliography  Save this article

Enhancing biomass + coal Co-firing scenarios via biomass torrefaction and carbonization: Case study of avocado pit biomass and Illinois No. 6 coal

Author

Listed:
  • Xue, Junjie
  • Chellappa, Thiago
  • Ceylan, Selim
  • Goldfarb, Jillian L.

Abstract

Co-firing of biomass with coal is a short-term solution to increase renewables in energy generation portfolios. Fuel blending uses existing infrastructure for coal combustion to reduce economic costs and net CO2 and SOx emissions. However, the lower heating value and higher reactivity (at lower temperatures) for raw biomass than coal could lead to fuel segregation, resulting in burn-out at lower temperatures, loss of steam generation efficiency, and fouling. To probe whether torrefaction/carbonization may solve issues related to fuel segregation, this study analyzed the possibility of co-firing a series of avocado biomass samples carbonized at 200, 300, 400, 500 and 600 °C, with Illinois No. 6 coal. Overall, the H/C ratio and average activation energy of oxidation of the biomass decreased as pyrolysis temperature increased, while surface area and higher heating value increased. Low temperature pyrolysis (300 °C) produced a biochar with similar characteristics to the coal, virtually eliminating fuel segregation as noted through derivative thermogravimetric curves with singular peak reactivities. As carbonization temperature increases, the energy input required to carbonize the biomass increases, and there may be issues with reverse fuel segregation, where the biomass begins to resemble a much higher rank coal than often available in the United States.

Suggested Citation

  • Xue, Junjie & Chellappa, Thiago & Ceylan, Selim & Goldfarb, Jillian L., 2018. "Enhancing biomass + coal Co-firing scenarios via biomass torrefaction and carbonization: Case study of avocado pit biomass and Illinois No. 6 coal," Renewable Energy, Elsevier, vol. 122(C), pages 152-162.
  • Handle: RePEc:eee:renene:v:122:y:2018:i:c:p:152-162
    DOI: 10.1016/j.renene.2018.01.066
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118300764
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.01.066?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Van de Velden, Manon & Baeyens, Jan & Brems, Anke & Janssens, Bart & Dewil, Raf, 2010. "Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction," Renewable Energy, Elsevier, vol. 35(1), pages 232-242.
    2. Rentizelas, Athanasios A. & Li, Jun, 2016. "Techno-economic and carbon emissions analysis of biomass torrefaction downstream in international bioenergy supply chains for co-firing," Energy, Elsevier, vol. 114(C), pages 129-142.
    3. Li, Jun & Brzdekiewicz, Artur & Yang, Weihong & Blasiak, Wlodzimierz, 2012. "Co-firing based on biomass torrefaction in a pulverized coal boiler with aim of 100% fuel switching," Applied Energy, Elsevier, vol. 99(C), pages 344-354.
    4. Kan, Tao & Strezov, Vladimir & Evans, Tim J., 2016. "Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1126-1140.
    5. Park, Sang-Woo & Jang, Cheol-Hyeon & Baek, Kyung-Ryul & Yang, Jae-Kyung, 2012. "Torrefaction and low-temperature carbonization of woody biomass: Evaluation of fuel characteristics of the products," Energy, Elsevier, vol. 45(1), pages 676-685.
    6. Han, Jun & Kim, Heejoon, 2008. "The reduction and control technology of tar during biomass gasification/pyrolysis: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(2), pages 397-416, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kongto, Pumin & Palamanit, Arkom & Chaiprapat, Sumate & Tippayawong, Nakorn & Khempila, Jarunee & Lam, Su Shiung & Hayat, Asif & Yuh Yek, Peter Nai, 2023. "Physicochemical changes and energy properties of torrefied rubberwood biomass produced by different scale moving bed reactors," Renewable Energy, Elsevier, vol. 219(P2).
    2. Adrian Knapczyk & Sławomir Francik & Marcin Jewiarz & Agnieszka Zawiślak & Renata Francik, 2020. "Thermal Treatment of Biomass: A Bibliometric Analysis—The Torrefaction Case," Energies, MDPI, vol. 14(1), pages 1-31, December.
    3. Michela Lucian & Fabio Merzari & Michele Gubert & Antonio Messineo & Maurizio Volpe, 2021. "Industrial-Scale Hydrothermal Carbonization of Agro-Industrial Digested Sludge: Filterability Enhancement and Phosphorus Recovery," Sustainability, MDPI, vol. 13(16), pages 1-15, August.
    4. Masami Ashizawa & Maromu Otaka & Hiromi Yamamoto & Atsushi Akisawa, 2022. "CO 2 Emissions and Economy of Co-Firing Carbonized Wood Pellets at Coal-Fired Power Plants: The Case of Overseas Production of Pellets and Use in Japan," Energies, MDPI, vol. 15(5), pages 1-10, February.
    5. Xue, Junjie & Goldfarb, Jillian L., 2018. "Enhanced devolatilization during torrefaction of blended biomass streams results in additive heating values and synergistic oxidation behavior of solid fuels," Energy, Elsevier, vol. 152(C), pages 1-12.
    6. Fabio Merzari & Jillian Goldfarb & Gianni Andreottola & Tanja Mimmo & Maurizio Volpe & Luca Fiori, 2020. "Hydrothermal Carbonization as a Strategy for Sewage Sludge Management: Influence of Process Withdrawal Point on Hydrochar Properties," Energies, MDPI, vol. 13(11), pages 1-22, June.
    7. Yek, Peter Nai Yuh & Chen, Xiangmeng & Peng, Wanxi & Liew, Rock Keey & Cheng, Chin Kui & Sonne, Christian & Sii, How Sing & Lam, Su Shiung, 2021. "Microwave co-torrefaction of waste oil and biomass pellets for simultaneous recovery of waste and co-firing fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    8. Sher, Farooq & Yaqoob, Aqsa & Saeed, Farrukh & Zhang, Shengfu & Jahan, Zaib & Klemeš, Jiří Jaromír, 2020. "Torrefied biomass fuels as a renewable alternative to coal in co-firing for power generation," Energy, Elsevier, vol. 209(C).
    9. Nawaz, Zanib & Ali, Usman, 2020. "Techno-economic evaluation of different operating scenarios for indigenous and imported coal blends and biomass co-firing on supercritical coal fired power plant performance," Energy, Elsevier, vol. 212(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Batidzirai, B. & Mignot, A.P.R. & Schakel, W.B. & Junginger, H.M. & Faaij, A.P.C., 2013. "Biomass torrefaction technology: Techno-economic status and future prospects," Energy, Elsevier, vol. 62(C), pages 196-214.
    2. Tran, Khanh-Quang & Luo, Xun & Seisenbaeva, Gulaim & Jirjis, Raida, 2013. "Stump torrefaction for bioenergy application," Applied Energy, Elsevier, vol. 112(C), pages 539-546.
    3. Juan Luis Aguirre & Juan Baena & María Teresa Martín & Leonor Nozal & Sergio González & José Luis Manjón & Manuel Peinado, 2020. "Composition, Ageing and Herbicidal Properties of Wood Vinegar Obtained through Fast Biomass Pyrolysis," Energies, MDPI, vol. 13(10), pages 1-17, May.
    4. Chen, Wei-Hsin & Peng, Jianghong & Bi, Xiaotao T., 2015. "A state-of-the-art review of biomass torrefaction, densification and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 847-866.
    5. Chen, Yun-Chun & Chen, Wei-Hsin & Lin, Bo-Jhih & Chang, Jo-Shu & Ong, Hwai Chyuan, 2016. "Impact of torrefaction on the composition, structure and reactivity of a microalga residue," Applied Energy, Elsevier, vol. 181(C), pages 110-119.
    6. Seok-Jun Kim & Kwang-Cheol Oh & Sun-Yong Park & Young-Min Ju & La-Hoon Cho & Chung-Geon Lee & Min-Jun Kim & In-Seon Jeong & Dae-Hyun Kim, 2021. "Development and Validation of Mass Reduction Prediction Model and Analysis of Fuel Properties for Agro-Byproduct Torrefaction," Energies, MDPI, vol. 14(19), pages 1-14, September.
    7. Collard, François-Xavier & Blin, Joël, 2014. "A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 594-608.
    8. Cai, Junmeng & Xu, Di & Dong, Zhujun & Yu, Xi & Yang, Yang & Banks, Scott W. & Bridgwater, Anthony V., 2018. "Processing thermogravimetric analysis data for isoconversional kinetic analysis of lignocellulosic biomass pyrolysis: Case study of corn stalk," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2705-2715.
    9. Mohsin Raza & Abrar Inayat & Basim Abu-Jdayil, 2021. "Crude Glycerol as a Potential Feedstock for Future Energy via Thermochemical Conversion Processes: A Review," Sustainability, MDPI, vol. 13(22), pages 1-27, November.
    10. Peters, Jens F. & Banks, Scott W. & Bridgwater, Anthony V. & Dufour, Javier, 2017. "A kinetic reaction model for biomass pyrolysis processes in Aspen Plus," Applied Energy, Elsevier, vol. 188(C), pages 595-603.
    11. Xue, Junjie & Goldfarb, Jillian L., 2018. "Enhanced devolatilization during torrefaction of blended biomass streams results in additive heating values and synergistic oxidation behavior of solid fuels," Energy, Elsevier, vol. 152(C), pages 1-12.
    12. Mohsin Raza & Abrar Inayat & Ashfaq Ahmed & Farrukh Jamil & Chaouki Ghenai & Salman R. Naqvi & Abdallah Shanableh & Muhammad Ayoub & Ammara Waris & Young-Kwon Park, 2021. "Progress of the Pyrolyzer Reactors and Advanced Technologies for Biomass Pyrolysis Processing," Sustainability, MDPI, vol. 13(19), pages 1-42, October.
    13. Chen, Wei-Hsin & Kuo, Po-Chih & Liu, Shih-Hsien & Wu, Wei, 2014. "Thermal characterization of oil palm fiber and eucalyptus in torrefaction," Energy, Elsevier, vol. 71(C), pages 40-48.
    14. Primaz, Carmem T. & Ribes-Greus, Amparo & Jacques, Rosângela A., 2021. "Valorization of cotton residues for production of bio-oil and engineered biochar," Energy, Elsevier, vol. 235(C).
    15. Andrew N. Amenaghawon & Chinedu L. Anyalewechi & Charity O. Okieimen & Heri Septya Kusuma, 2021. "Biomass pyrolysis technologies for value-added products: a state-of-the-art review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14324-14378, October.
    16. Weldekidan, Haftom & Strezov, Vladimir & Town, Graham, 2018. "Review of solar energy for biofuel extraction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 184-192.
    17. Liu, Yang & Song, Yongmeng & Ran, Chunmei & Siyal, Asif Ali & Chtaeva, Polina & Dai, Jianjun & Jiang, Zhihui & Deng, Zeyu & Zhang, Tianhao & Ao, Wenya & Fu, Jie, 2020. "Pyrolysis of furfural residue in a bubbling fluidized bed reactor: Biochar characterization and analysis," Energy, Elsevier, vol. 211(C).
    18. Gholizadeh, Mortaza & Hu, Xun & Liu, Qing, 2019. "A mini review of the specialties of the bio-oils produced from pyrolysis of 20 different biomasses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    19. Zhang, Chenting & Chao, Li & Zhang, Zhanming & Zhang, Lijun & Li, Qingyin & Fan, Huailin & Zhang, Shu & Liu, Qing & Qiao, Yingyun & Tian, Yuanyu & Wang, Yi & Hu, Xun, 2021. "Pyrolysis of cellulose: Evolution of functionalities and structure of bio-char versus temperature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    20. Yek, Peter Nai Yuh & Cheng, Yoke Wang & Liew, Rock Keey & Wan Mahari, Wan Adibah & Ong, Hwai Chyuan & Chen, Wei-Hsin & Peng, Wanxi & Park, Young-Kwon & Sonne, Christian & Kong, Sieng Huat & Tabatabaei, 2021. "Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:122:y:2018:i:c:p:152-162. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.