IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v208y2020ics0360544220315516.html
   My bibliography  Save this article

Reduction of the energy demand of a second-generation bioethanol plant by heat integration and vapour recompression between different columns

Author

Listed:
  • Hegely, Laszlo
  • Lang, Peter

Abstract

The distillation separation technology of an existing second-generation bioethanol production plant is investigated by simulation with a professional flowsheet simulator. The plant contains three distillation columns in series with increasing pressure. Our aim is to compare different Heat Integration (HI) possibilities for the reduction of external heating and cooling energy demands. Besides ethanol and water, 13 further organic pollutant components are taken into account, which were usually neglected in the literature. Several levels of Heat Integration options are studied: first only streams are integrated (HI-A), then a reboiler and a condenser of two different columns are coupled (HI–B). After that streams and columns are heat integrated (HI–C), finally a vapour recompression heat pump is also applied (HI–C + VRC) in a new configuration. The external energy demand and total annual cost of the different configurations are compared. Considerable energy saving can be achieved by all configurations, but the application of a heat pump is not economical in this case. The influence of changing the pressure of the ethanol concentrating column on the different Heat Integration configurations is also investigated.

Suggested Citation

  • Hegely, Laszlo & Lang, Peter, 2020. "Reduction of the energy demand of a second-generation bioethanol plant by heat integration and vapour recompression between different columns," Energy, Elsevier, vol. 208(C).
  • Handle: RePEc:eee:energy:v:208:y:2020:i:c:s0360544220315516
    DOI: 10.1016/j.energy.2020.118443
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220315516
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118443?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Yongteng & Ma, Kang & Bai, Wenting & Du, Deqing & Zhu, Zhaoyou & Wang, Yinglong & Gao, Jun, 2018. "Energy-saving thermally coupled ternary extractive distillation process by combining with mixed entrainer for separating ternary mixture containing bioethanol," Energy, Elsevier, vol. 148(C), pages 296-308.
    2. Dias, Marina O.S. & Modesto, Marcelo & Ensinas, Adriano V. & Nebra, Silvia A. & Filho, Rubens Maciel & Rossell, Carlos E.V., 2011. "Improving bioethanol production from sugarcane: evaluation of distillation, thermal integration and cogeneration systems," Energy, Elsevier, vol. 36(6), pages 3691-3703.
    3. Kravanja, Philipp & Modarresi, Ala & Friedl, Anton, 2013. "Heat integration of biochemical ethanol production from straw – A case study," Applied Energy, Elsevier, vol. 102(C), pages 32-43.
    4. Bessa, Larissa C.B.A. & Batista, Fabio R.M. & Meirelles, Antonio J.A., 2012. "Double-effect integration of multicomponent alcoholic distillation columns," Energy, Elsevier, vol. 45(1), pages 603-612.
    5. Morandin, Matteo & Toffolo, Andrea & Lazzaretto, Andrea & Maréchal, François & Ensinas, Adriano V. & Nebra, Silvia A., 2011. "Synthesis and parameter optimization of a combined sugar and ethanol production process integrated with a CHP system," Energy, Elsevier, vol. 36(6), pages 3675-3690.
    6. Tgarguifa, Ahmed & Abderafi, Souad & Bounahmidi, Tijani, 2017. "Energetic optimization of Moroccan distillery using simulation and response surface methodology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 415-425.
    7. Bessa, Larissa C.B.A. & Ferreira, M.C. & Batista, Eduardo A.C. & Meirelles, Antonio J.A., 2013. "Performance and cost evaluation of a new double-effect integration of multicomponent bioethanol distillation," Energy, Elsevier, vol. 63(C), pages 1-9.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guedes do Nascimento, Leomário & Costa Monteiro, Luciane Pimentel & de Cássia Colman Simões, Rita & Prata, Diego Martinez, 2023. "Eco-efficiency analysis and intensification of the biodiesel production process through vapor recompression strategy," Energy, Elsevier, vol. 275(C).
    2. Wu, Dongxu & Cui, Qi & Gao, Yuanzhi & Dai, Zhaofeng & Chen, Bo & Wang, Changling & Zhang, Xiaosong, 2022. "Study on the performance of solar interfacial evaporation for high-efficiency liquid desiccant regeneration," Energy, Elsevier, vol. 257(C).
    3. Seferlis, Panos & Varbanov, Petar Sabev & Papadopoulos, Athanasios I. & Chin, Hon Huin & Klemeš, Jiří Jaromír, 2021. "Sustainable design, integration, and operation for energy high-performance process systems," Energy, Elsevier, vol. 224(C).
    4. Zhang, Huafu & Tong, Lige & Zhang, Zhentao & Song, Yanchang & Yang, Junling & Yue, Yunkai & Wu, Zhenqun & Wang, Youdong & Yu, Ze & Zhang, Junhao, 2023. "A integrated mechanical vapor compression enrichment system of radioactive wastewater: Experimental study, model optimization and performance prediction," Energy, Elsevier, vol. 282(C).
    5. Zhuang, Yu & Zhou, Congcong & Zhang, Lei & Liu, Linlin & Du, Jian & Shen, Shengqiang, 2021. "A simultaneous optimization model for a heat-integrated syngas-to-methanol process with Kalina Cycle for waste heat recovery," Energy, Elsevier, vol. 227(C).
    6. Duan, Cong & Li, Chunli, 2023. "Energy-saving improvement of heat integration for separating dilute azeotropic components in extractive distillation," Energy, Elsevier, vol. 263(PC).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bechara, Rami & Gomez, Adrien & Saint-Antonin, Valérie & Schweitzer, Jean-Marc & Maréchal, François & Ensinas, Adriano, 2018. "Review of design works for the conversion of sugarcane to first and second-generation ethanol and electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 152-164.
    2. Bechara, Rami & Gomez, Adrien & Saint-Antonin, Valérie & Schweitzer, Jean-Marc & Maréchal, François, 2016. "Methodology for the optimal design of an integrated sugarcane distillery and cogeneration process for ethanol and power production," Energy, Elsevier, vol. 117(P2), pages 540-549.
    3. Bechara, Rami & Gomez, Adrien & Saint-Antonin, Valérie & Schweitzer, Jean-Marc & Maréchal, François, 2016. "Methodology for the design and comparison of optimal production configurations of first and first and second generation ethanol with power," Applied Energy, Elsevier, vol. 184(C), pages 247-265.
    4. Tgarguifa, Ahmed & Abderafi, Souad & Bounahmidi, Tijani, 2017. "Energetic optimization of Moroccan distillery using simulation and response surface methodology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 415-425.
    5. Bessa, Larissa C.B.A. & Ferreira, M.C. & Batista, Eduardo A.C. & Meirelles, Antonio J.A., 2013. "Performance and cost evaluation of a new double-effect integration of multicomponent bioethanol distillation," Energy, Elsevier, vol. 63(C), pages 1-9.
    6. Palacios-Bereche, M.C. & Palacios-Bereche, R. & Ensinas, A.V. & Gallego, A. Garrido & Modesto, Marcelo & Nebra, S.A., 2022. "Brazilian sugar cane industry – A survey on future improvements in the process energy management," Energy, Elsevier, vol. 259(C).
    7. Dias, Marina O.S. & Junqueira, Tassia L. & Jesus, Charles D.F. & Rossell, Carlos E.V. & Maciel Filho, Rubens & Bonomi, Antonio, 2012. "Improving second generation ethanol production through optimization of first generation production process from sugarcane," Energy, Elsevier, vol. 43(1), pages 246-252.
    8. Díaz Pérez, Álvaro A. & Escobar Palacio, José C. & Venturini, Osvaldo J. & Martínez Reyes, Arnaldo M. & Rúa Orozco, Dimas J. & Silva Lora, Electo E. & Almazán del Olmo, Oscar A., 2018. "Thermodynamic and economic evaluation of reheat and regeneration alternatives in cogeneration systems of the Brazilian sugarcane and alcohol sector," Energy, Elsevier, vol. 152(C), pages 247-262.
    9. Martinez-Hernandez, Elias & Sadhukhan, Jhuma & Campbell, Grant M., 2013. "Integration of bioethanol as an in-process material in biorefineries using mass pinch analysis," Applied Energy, Elsevier, vol. 104(C), pages 517-526.
    10. Pina, Eduardo A. & Palacios-Bereche, Reynaldo & Chavez-Rodriguez, Mauro F. & Ensinas, Adriano V. & Modesto, Marcelo & Nebra, Silvia A., 2017. "Reduction of process steam demand and water-usage through heat integration in sugar and ethanol production from sugarcane – Evaluation of different plant configurations," Energy, Elsevier, vol. 138(C), pages 1263-1280.
    11. Varbanov, Petar Sabev & Fodor, Zsófia & Klemeš, Jiří Jaromír, 2012. "Total Site targeting with process specific minimum temperature difference (ΔTmin)," Energy, Elsevier, vol. 44(1), pages 20-28.
    12. Clauser, Nicolás M. & Felissia, Fernando E. & Area, María C. & Vallejos, María E., 2021. "A framework for the design and analysis of integrated multi-product biorefineries from agricultural and forestry wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    13. Geng, Xueli & Yan, Peng & Zhou, Hao & Li, Hong & Gao, Xin, 2023. "Process synthesis and 4E evaluation of hybrid reactive distillation processes for the ethanol and tert-butanol recovery from wastewater," Renewable Energy, Elsevier, vol. 205(C), pages 929-944.
    14. Manuel Raul Pelaez-Samaniego & Juan L. Espinoza & José Jara-Alvear & Pablo Arias-Reyes & Fernando Maldonado-Arias & Patricia Recalde-Galindo & Pablo Rosero & Tsai Garcia-Perez, 2020. "Potential and Impacts of Cogeneration in Tropical Climate Countries: Ecuador as a Case Study," Energies, MDPI, vol. 13(20), pages 1-26, October.
    15. Marie Rougier & Jérôme Bellettre & Lingai Luo, 2021. "An Experimental Study of a Wine Batch Distillation in a Copper Pot Still Heated by Gas," Energies, MDPI, vol. 14(11), pages 1-25, June.
    16. Cheng, Haiyang & Wang, Yangyang & Wang, Wenxin & Wen, Chunhe & Wei, Xuewen & Wang, Yu & Wang, Yinglong & Cui, Peizhe & Zhu, Zhaoyou, 2023. "Economic, environmental, exergy (3E) analysis and multi-objective genetic algorithm optimization of efficient and energy-saving separation of diethoxymethane/toluene/ethanol by extractive distillation," Energy, Elsevier, vol. 284(C).
    17. Botshekan, Maryam & Moheb, Ahmad & Vatankhah, Fatemeh & Karimi, Keikhosro & Shafiei, Marzieh, 2022. "Energy saving alternatives for renewable ethanol production with the focus on separation/purification units: A techno-economic analysis," Energy, Elsevier, vol. 239(PE).
    18. Yang, Minbo & Feng, Xiao & Liu, Guilian, 2016. "Heat integration of heat pump assisted distillation into the overall process," Applied Energy, Elsevier, vol. 162(C), pages 1-10.
    19. Lim, Jeng Shiun & Abdul Manan, Zainuddin & Hashim, Haslenda & Wan Alwi, Sharifah Rafidah, 2013. "Towards an integrated, resource-efficient rice mill complex," Resources, Conservation & Recycling, Elsevier, vol. 75(C), pages 41-51.
    20. Bressanin, Jéssica Marcon & Guimarães, Henrique Real & Chagas, Mateus Ferreira & Sampaio, Isabelle Lobo de Mesquita & Klein, Bruno Colling & Watanabe, Marcos Djun Barbosa & Bonomi, Antonio & Morais, E, 2021. "Advanced technologies for electricity production in the sugarcane value chain are a strategic option in a carbon reward policy context," Energy Policy, Elsevier, vol. 159(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:208:y:2020:i:c:s0360544220315516. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.