IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i20p5254-d425660.html
   My bibliography  Save this article

Potential and Impacts of Cogeneration in Tropical Climate Countries: Ecuador as a Case Study

Author

Listed:
  • Manuel Raul Pelaez-Samaniego

    (Department of Applied Chemistry and Systems of Production, Faculty of Chemical Sciences, Universidad de Cuenca, Cuenca 010107, Ecuador)

  • Juan L. Espinoza

    (Faculty of Engineering, DEET, Universidad de Cuenca, Cuenca 010107, Ecuador)

  • José Jara-Alvear

    (Corporación Eléctrica del Ecuador CELEC E.P., Cuenca 010109, Ecuador)

  • Pablo Arias-Reyes

    (Faculty of Electrical Engineering, Smart Grid Energy Lab., Universidad Católica de Cuenca, Cuenca 010107, Ecuador)

  • Fernando Maldonado-Arias

    (Faculty of Economic Sciences, Universidad de Cuenca, Cuenca 010107, Ecuador)

  • Patricia Recalde-Galindo

    (Ministry of Energy and Natural Non-Renewable Resources, Quito 170135, Ecuador)

  • Pablo Rosero

    (Ministry of Energy and Natural Non-Renewable Resources, Quito 170135, Ecuador)

  • Tsai Garcia-Perez

    (Department of Applied Chemistry and Systems of Production, Faculty of Chemical Sciences, Universidad de Cuenca, Cuenca 010107, Ecuador)

Abstract

High dependency on fossil fuels, low energy efficiency, poor diversification of energy sources, and a low rate of access to electricity are challenges that need to be solved in many developing countries to make their energy systems more sustainable. Cogeneration has been identified as a key strategy for increasing energy generation capacity, reducing greenhouse gas (GHG) emissions, and improving energy efficiency in industry, one of the most energy-demanding sectors worldwide. However, more studies are necessary to define approaches for implementing cogeneration, particularly in countries with tropical climates (such as Ecuador). In Ecuador, the National Plan of Energy Efficiency includes cogeneration as one of the four routes for making energy use more sustainable in the industrial sector. The objective of this paper is two-fold: (1) to identify the potential of cogeneration in the Ecuadorian industry, and (2) to show the positive impacts of cogeneration on power generation capacity, GHG emissions reduction, energy efficiency, and the economy of the country. The study uses methodologies from works in specific types of industrial processes and puts them together to evaluate the potential and analyze the impacts of cogeneration at national level. The potential of cogeneration in Ecuador is ~600 MW el , which is 12% of Ecuador’s electricity generation capacity. This potential could save ~18.6 × 10 6 L/month of oil-derived fuels, avoiding up to 576,800 tCO 2 /year, and creating around 2600 direct jobs. Cogeneration could increase energy efficiency in the Ecuadorian industry by up to 40%.

Suggested Citation

  • Manuel Raul Pelaez-Samaniego & Juan L. Espinoza & José Jara-Alvear & Pablo Arias-Reyes & Fernando Maldonado-Arias & Patricia Recalde-Galindo & Pablo Rosero & Tsai Garcia-Perez, 2020. "Potential and Impacts of Cogeneration in Tropical Climate Countries: Ecuador as a Case Study," Energies, MDPI, vol. 13(20), pages 1-26, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5254-:d:425660
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/20/5254/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/20/5254/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Mingxi & Shi, Yang & Fang, Fang, 2014. "Combined cooling, heating and power systems: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 1-22.
    2. Bechara, Rami & Gomez, Adrien & Saint-Antonin, Valérie & Schweitzer, Jean-Marc & Maréchal, François, 2016. "Methodology for the optimal design of an integrated sugarcane distillery and cogeneration process for ethanol and power production," Energy, Elsevier, vol. 117(P2), pages 540-549.
    3. Mahlia, T.M.I. & Chan, P.L., 2011. "Life cycle cost analysis of fuel cell based cogeneration system for residential application in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 416-426, January.
    4. Coronado, Christian Rodriguez & Yoshioka, Juliana Tiyoko & Silveira, José Luz, 2011. "Electricity, hot water and cold water production from biomass. Energetic and economical analysis of the compact system of cogeneration run with woodgas from a small downdraft gasifier," Renewable Energy, Elsevier, vol. 36(6), pages 1861-1868.
    5. Chicco, Gianfranco & Mancarella, Pierluigi, 2008. "Assessment of the greenhouse gas emissions from cogeneration and trigeneration systems. Part I: Models and indicators," Energy, Elsevier, vol. 33(3), pages 410-417.
    6. Gonzales Palomino, Raul & Nebra, Silvia A., 2012. "The potential of natural gas use including cogeneration in large-sized industry and commercial sector in Peru," Energy Policy, Elsevier, vol. 50(C), pages 192-206.
    7. Gongora, Aldair & Villafranco, Dorien, 2018. "Sugarcane bagasse cogeneration in Belize: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 58-63.
    8. Pelaez-Samaniego, Manuel Raul & Riveros-Godoy, Gustavo & Torres-Contreras, Santiago & Garcia-Perez, Tsai & Albornoz-Vintimilla, Esteban, 2014. "Production and use of electrolytic hydrogen in Ecuador towards a low carbon economy," Energy, Elsevier, vol. 64(C), pages 626-631.
    9. Arshad, Muhammad & Ahmed, Sibtain, 2016. "Cogeneration through bagasse: A renewable strategy to meet the future energy needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 732-737.
    10. Ackerman, Frank & Stanton, Elizabeth A., 2012. "Climate risks and carbon prices: Revising the social cost of carbon," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 6, pages 1-25.
    11. Richard S.J. Tol, 2017. "The Private Benefit of Carbon and its Social Cost," Working Paper Series 0717, Department of Economics, University of Sussex Business School.
    12. Dias, Marina O.S. & Modesto, Marcelo & Ensinas, Adriano V. & Nebra, Silvia A. & Filho, Rubens Maciel & Rossell, Carlos E.V., 2011. "Improving bioethanol production from sugarcane: evaluation of distillation, thermal integration and cogeneration systems," Energy, Elsevier, vol. 36(6), pages 3691-3703.
    13. Freschi, F. & Giaccone, L. & Lazzeroni, P. & Repetto, M., 2013. "Economic and environmental analysis of a trigeneration system for food-industry: A case study," Applied Energy, Elsevier, vol. 107(C), pages 157-172.
    14. Carvalho, Monica & Serra, Luis M. & Lozano, Miguel A., 2011. "Geographic evaluation of trigeneration systems in the tertiary sector. Effect of climatic and electricity supply conditions," Energy, Elsevier, vol. 36(4), pages 1931-1939.
    15. Udomsri, Seksan & Martin, Andrew R. & Martin, Viktoria, 2011. "Thermally driven cooling coupled with municipal solid waste-fired power plant: Application of combined heat, cooling and power in tropical urban areas," Applied Energy, Elsevier, vol. 88(5), pages 1532-1542, May.
    16. Pelaez-Samaniego, M.R. & Garcia-Perez, M. & Cortez, L.A.B. & Oscullo, J. & Olmedo, G., 2007. "Energy sector in Ecuador: Current status," Energy Policy, Elsevier, vol. 35(8), pages 4177-4189, August.
    17. Frances C. Moore & Delavane B. Diaz, 2015. "Temperature impacts on economic growth warrant stringent mitigation policy," Nature Climate Change, Nature, vol. 5(2), pages 127-131, February.
    18. Mujeebu, M.A. & Jayaraj, S. & Ashok, S. & Abdullah, M.Z. & Khalil, M., 2009. "Feasibility study of cogeneration in a plywood industry with power export to grid," Applied Energy, Elsevier, vol. 86(5), pages 657-662, May.
    19. Rafiaani, Parisa & Kuppens, Tom & Dael, Miet Van & Azadi, Hossein & Lebailly, Philippe & Passel, Steven Van, 2018. "Social sustainability assessments in the biobased economy: Towards a systemic approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P2), pages 1839-1853.
    20. Szklo, Alexandre Salem & Tolmasquim, Maurício Tiomno, 2001. "Strategic cogeneration -- fresh horizons for the development of cogeneration in Brazil," Applied Energy, Elsevier, vol. 69(4), pages 257-268, August.
    21. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2012. "Temperature Shocks and Economic Growth: Evidence from the Last Half Century," American Economic Journal: Macroeconomics, American Economic Association, vol. 4(3), pages 66-95, July.
    22. Restuti, Dewi & Michaelowa, Axel, 2007. "The economic potential of bagasse cogeneration as CDM projects in Indonesia," Energy Policy, Elsevier, vol. 35(7), pages 3952-3966, July.
    23. Simo, A & Siyam Siwe, S, 2000. "Availability and conversion to energy potentials of wood-based industry residues in Cameroon," Renewable Energy, Elsevier, vol. 19(1), pages 213-218.
    24. Cho, Woojin & Lee, Kwan-Soo, 2014. "A simple sizing method for combined heat and power units," Energy, Elsevier, vol. 65(C), pages 123-133.
    25. Frances C. Moore & Delavane B. Diaz, 2015. "Erratum: Temperature impacts on economic growth warrant stringent mitigation policy," Nature Climate Change, Nature, vol. 5(3), pages 280-280, March.
    26. Bataille, Chris & Melton, Noel, 2017. "Energy efficiency and economic growth: A retrospective CGE analysis for Canada from 2002 to 2012," Energy Economics, Elsevier, vol. 64(C), pages 118-130.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Franziska Piontek & Matthias Kalkuhl & Elmar Kriegler & Anselm Schultes & Marian Leimbach & Ottmar Edenhofer & Nico Bauer, 2019. "Economic Growth Effects of Alternative Climate Change Impact Channels in Economic Modeling," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(4), pages 1357-1385, August.
    2. Armon Rezai & Frederick Van der Ploeg, 2016. "Intergenerational Inequality Aversion, Growth, and the Role of Damages: Occam's Rule for the Global Carbon Tax," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 3(2), pages 493-522.
    3. Armon Rezai & Frederick Van der Ploeg, 2016. "Intergenerational Inequality Aversion, Growth, and the Role of Damages: Occam's Rule for the Global Carbon Tax," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 3(2), pages 493-522.
    4. Richard S J Tol, 2018. "The Economic Impacts of Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 4-25.
    5. Domenico Enrico Massimo & Vincenzo Del Giudice & Alessandro Malerba & Carlo Bernardo & Mariangela Musolino & Pierfrancesco De Paola, 2021. "Valuation of Ecological Retrofitting Technology in Existing Buildings: A Real-World Case Study," Sustainability, MDPI, vol. 13(13), pages 1-35, June.
    6. Hongbo Duan & Gupeng Zhang & Shouyang Wang & Ying Fan, 2018. "Balancing China’s climate damage risk against emission control costs," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(3), pages 387-403, March.
    7. Luca Gerotto & Paolo Pellizzari, 2021. "A replication of Pindyck’s willingness to pay: on the efforts required to obtain results," SN Business & Economics, Springer, vol. 1(5), pages 1-25, May.
    8. Kalkuhl, Matthias & Wenz, Leonie, 2020. "The impact of climate conditions on economic production. Evidence from a global panel of regions," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    9. Tobias Kranz & Hamza Bennani & Matthias Neuenkirch, 2024. "Monetary Policy and Climate Change: Challenges and the Role of Major Central Banks," Research Papers in Economics 2024-01, University of Trier, Department of Economics.
    10. Gregory Casey & Stephie Fried & Ethan Goode, 2023. "Projecting the Impact of Rising Temperatures: The Role of Macroeconomic Dynamics," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 71(3), pages 688-718, September.
    11. Baarsch, Florent & Granadillos, Jessie R. & Hare, William & Knaus, Maria & Krapp, Mario & Schaeffer, Michiel & Lotze-Campen, Hermann, 2020. "The impact of climate change on incomes and convergence in Africa," World Development, Elsevier, vol. 126(C).
    12. Matthew Agarwala & Josh Martin, 2022. "Environmentally-adjusted productivity measures for the UK," Working Papers 028, The Productivity Institute.
    13. Wu, Zhiyang & Zhou, Tao & Zhang, Ning & Choi, Yongrok & Kong, Fanbin, 2023. "A hidden risk in climate change: The effect of daily rainfall shocks on industrial activities," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 161-180.
    14. Bargos, Fabiano Fernandes & Lamas, Wendell de Queiróz & Bilato, Gabriel Adam, 2018. "Computational tools and operational research for optimal design of co-generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 507-516.
    15. Richard S.J. Tol, 2021. "Estimates of the social cost of carbon have not changed over time," Working Paper Series 0821, Department of Economics, University of Sussex Business School.
    16. Yongyang Cai & William Brock & Anastasios Xepapadeas, 2023. "Climate Change Impact on Economic Growth: Regional Climate Policy under Cooperation and Noncooperation," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 10(3), pages 569-605.
    17. Letta, Marco & Montalbano, Pierluigi & Tol, Richard S.J., 2018. "Temperature shocks, short-term growth and poverty thresholds: Evidence from rural Tanzania," World Development, Elsevier, vol. 112(C), pages 13-32.
    18. Bechara, Rami & Gomez, Adrien & Saint-Antonin, Valérie & Schweitzer, Jean-Marc & Maréchal, François & Ensinas, Adriano, 2018. "Review of design works for the conversion of sugarcane to first and second-generation ethanol and electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 152-164.
    19. Tol, Richard S.J., 2019. "A social cost of carbon for (almost) every country," Energy Economics, Elsevier, vol. 83(C), pages 555-566.
    20. Hiroaki Sakamoto & Masako Ikefuji & Jan R. Magnus, 2020. "Adaptation for Mitigation," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 75(3), pages 457-484, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5254-:d:425660. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.