IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v208y2020ics0360544220314262.html
   My bibliography  Save this article

Data-driven approach for short-term power demand prediction of fuel cell hybrid vehicles

Author

Listed:
  • Zeng, Tao
  • Zhang, Caizhi
  • Hao, Dong
  • Cao, Dongpu
  • Chen, Jiawei
  • Chen, Jinrui
  • Li, Jin

Abstract

Due to slow internal mass transport, the fuel cell is a typical time-delay control object in vehicular hybrid powertrain. To yield better control effect, the predictive control is considered as an effective solution, in which the short-term power demand of vehicle is a key input variable and must be predicted accurately. However, a time-phase mismatch phenomenon usually occurs in prediction results when using non-iterative direct prediction method, resulting in poor prediction accuracy. This study systematically explains the mechanism of the studied time-phase mismatch and proposes a novel iterative learning framework (ILF) to reduce it. Several machine learning algorithms are compared to select a proper learning core for ILF. The results show that prediction RMSE reduces up to 76.8% and 65.0% for the power and power change rate predictions, respectively, comparing with non-iterative prediction manner. The least-squares support vector machine as the learning core of ILF achieves the best performance within the shortest runtime. Moreover, the proposed ILF predictor has a good adaptability to various driving conditions through more validations. The proposed ILF has better predictable ability for the future data comparing with classical recurrent time-series prediction method. The proposed ILF is expected to improve the accuracy of vehicle load-status perception.

Suggested Citation

  • Zeng, Tao & Zhang, Caizhi & Hao, Dong & Cao, Dongpu & Chen, Jiawei & Chen, Jinrui & Li, Jin, 2020. "Data-driven approach for short-term power demand prediction of fuel cell hybrid vehicles," Energy, Elsevier, vol. 208(C).
  • Handle: RePEc:eee:energy:v:208:y:2020:i:c:s0360544220314262
    DOI: 10.1016/j.energy.2020.118319
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220314262
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118319?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wee, Jung-Ho, 2010. "Contribution of fuel cell systems to CO2 emission reduction in their application fields," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 735-744, February.
    2. Zeng, Jianwu & Qiao, Wei, 2013. "Short-term solar power prediction using a support vector machine," Renewable Energy, Elsevier, vol. 52(C), pages 118-127.
    3. Kim, Bosung & Cha, Dowon & Kim, Yongchan, 2015. "The effects of air stoichiometry and air excess ratio on the transient response of a PEMFC under load change conditions," Applied Energy, Elsevier, vol. 138(C), pages 143-149.
    4. Zhang, Caizhi & Liu, Zhitao & Zhang, Xiongwen & Chan, Siew Hwa & Wang, Youyi, 2016. "Dynamic performance of a high-temperature PEM (proton exchange membrane) fuel cell – Modelling and fuzzy control of purging process," Energy, Elsevier, vol. 95(C), pages 425-432.
    5. Zeng, Tao & Zhang, Caizhi & Hu, Minghui & Chen, Yan & Yuan, Changrong & Chen, Jingrui & Zhou, Anjian, 2018. "Modelling and predicting energy consumption of a range extender fuel cell hybrid vehicle," Energy, Elsevier, vol. 165(PB), pages 187-197.
    6. Pei, Pucheng & Chen, Huicui, 2014. "Main factors affecting the lifetime of Proton Exchange Membrane fuel cells in vehicle applications: A review," Applied Energy, Elsevier, vol. 125(C), pages 60-75.
    7. Nourani Esfetang, Naser & Kazemzadeh, Rasool, 2018. "A novel hybrid technique for prediction of electric power generation in wind farms based on WIPSO, neural network and wavelet transform," Energy, Elsevier, vol. 149(C), pages 662-674.
    8. Liu, Hui & Tian, Hong-qi & Liang, Xi-feng & Li, Yan-fei, 2015. "Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks," Applied Energy, Elsevier, vol. 157(C), pages 183-194.
    9. Pei, Lei & Zhu, Chunbo & Wang, Tiansi & Lu, Rengui & Chan, C.C., 2014. "Online peak power prediction based on a parameter and state estimator for lithium-ion batteries in electric vehicles," Energy, Elsevier, vol. 66(C), pages 766-778.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhiming Zhang & Sai Wu & Kunpeng Li & Jiaming Zhou & Caizhi Zhang & Guofeng Wang & Tong Zhang, 2022. "An Effective Force-Temperature-Humidity Coupled Modeling for PEMFC Performance Parameter Matching by Using CFD and FEA Co-Simulation," Sustainability, MDPI, vol. 14(21), pages 1-18, November.
    2. İnci, Mustafa & Büyük, Mehmet & Demir, Mehmet Hakan & İlbey, Göktürk, 2021. "A review and research on fuel cell electric vehicles: Topologies, power electronic converters, energy management methods, technical challenges, marketing and future aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    3. Min, Haitao & Wu, Huiduo & Zhao, Honghui & Sun, Weiyi & Yu, Yuanbin, 2024. "Research on energy management strategy for fuel cell hybrid electric vehicles based on multi-scale information fusion," Applied Energy, Elsevier, vol. 368(C).
    4. Zeng, Tao & Zhang, Caizhi & Zhang, Yanyi & Deng, Chenghao & Hao, Dong & Zhu, Zhongwen & Ran, Hongxu & Cao, Dongpu, 2021. "Optimization-oriented adaptive equivalent consumption minimization strategy based on short-term demand power prediction for fuel cell hybrid vehicle," Energy, Elsevier, vol. 227(C).
    5. Yang, Bo & Li, Danyang & Zeng, Chunyuan & Chen, Yijun & Guo, Zhengxun & Wang, Jingbo & Shu, Hongchun & Yu, Tao & Zhu, Jiawei, 2021. "Parameter extraction of PEMFC via Bayesian regularization neural network based meta-heuristic algorithms," Energy, Elsevier, vol. 228(C).
    6. Asensio, E. Maximiliano & Magallán, Guillermo A. & Pérez, Laura & De Angelo, Cristian H., 2022. "Short-term power demand prediction for energy management of an electric vehicle based on batteries and ultracapacitors," Energy, Elsevier, vol. 247(C).
    7. Wei, Pengnan & Chang, Guofeng & Fan, Ruijia & Xu, Yiming & Chen, Siqi, 2023. "Investigation of output performance and temperature distribution uniformity of PEMFC based on Pt loading gradient design," Applied Energy, Elsevier, vol. 352(C).
    8. Zeng, Tao & Zhang, Caizhi & Zhou, Anjian & Wu, Qi & Deng, Chenghao & Chan, Siew Hwa & Chen, Jinrui & Foley, Aoife M., 2021. "Enhancing reactant mass transfer inside fuel cells to improve dynamic performance via intelligent hydrogen pressure control," Energy, Elsevier, vol. 230(C).
    9. Badji, Abderrezak & Abdeslam, Djaffar Ould & Chabane, Djafar & Benamrouche, Nacereddine, 2022. "Real-time implementation of improved power frequency approach based energy management of fuel cell electric vehicle considering storage limitations," Energy, Elsevier, vol. 249(C).
    10. Zhang, Caizhi & Zeng, Tao & Wu, Qi & Deng, Chenghao & Chan, Siew Hwa & Liu, Zhixiang, 2021. "Improved efficiency maximization strategy for vehicular dual-stack fuel cell system considering load state of sub-stacks through predictive soft-loading," Renewable Energy, Elsevier, vol. 179(C), pages 929-944.
    11. Lei, Gang & Zheng, Hualin & Zhang, Jun & Siong Chin, Cheng & Xu, Xinhai & Zhou, Weijiang & Zhang, Caizhi, 2023. "Analyzing characteristic and modeling of high-temperature proton exchange membrane fuel cells with CO poisoning effect," Energy, Elsevier, vol. 282(C).
    12. Shi, Junzhe & Xu, Bin & Shen, Yimin & Wu, Jingbo, 2022. "Energy management strategy for battery/supercapacitor hybrid electric city bus based on driving pattern recognition," Energy, Elsevier, vol. 243(C).
    13. Tian, Chenlu & Liu, Yechun & Zhang, Guiqing & Yang, Yalong & Yan, Yi & Li, Chengdong, 2024. "Transfer learning based hybrid model for power demand prediction of large-scale electric vehicles," Energy, Elsevier, vol. 300(C).
    14. Fan, Ruijia & Chang, Guofeng & Xu, Yiming & Xu, Jiamin, 2024. "Investigating and quantifying the effects of catalyst layer gradients, operating conditions, and their interactions on PEMFC performance through global sensitivity analysis," Energy, Elsevier, vol. 290(C).
    15. Zhiming Zhang & Hui Ren & Song Hu & Xinfeng Zhang & Tong Zhang & Jiaming Zhou & Shangfeng Jiang & Tao Yu & Bo Deng, 2022. "Arrangement of Belleville Springs on Endplates Combined with Optimal Cross-Sectional Shape in PEMFC Stack Using Equivalent Beam Modeling and FEA," Sustainability, MDPI, vol. 14(23), pages 1-13, November.
    16. Xingmao Wang & Fengyan Yi & Qingqing Su & Jiaming Zhou & Yan Sun & Wei Guo & Xing Shu, 2023. "Influence of Longitudinal Wind on Hydrogen Leakage and Hydrogen Concentration Sensor Layout of Fuel Cell Vehicles," Sustainability, MDPI, vol. 15(13), pages 1-18, July.
    17. Chen, Dongfang & Pei, Pucheng & Meng, Yining & Ren, Peng & Li, Yuehua & Wang, Mingkai & Wang, Xizhong, 2022. "Novel extraction method of working condition spectrum for the lifetime prediction and energy management strategy evaluation of automotive fuel cells," Energy, Elsevier, vol. 255(C).
    18. Hong, Jichao & Liang, Fengwei & Chen, Yingjie & Wang, Facheng & Zhang, Xinyang & Li, Kerui & Zhang, Huaqin & Yang, Jingsong & Zhang, Chi & Yang, Haixu & Ma, Shikun & Yang, Qianqian, 2024. "A novel battery abnormality diagnosis method using multi-scale normalized coefficient of variation in real-world vehicles," Energy, Elsevier, vol. 299(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeng, Tao & Zhang, Caizhi & Zhou, Anjian & Wu, Qi & Deng, Chenghao & Chan, Siew Hwa & Chen, Jinrui & Foley, Aoife M., 2021. "Enhancing reactant mass transfer inside fuel cells to improve dynamic performance via intelligent hydrogen pressure control," Energy, Elsevier, vol. 230(C).
    2. Zeng, Tao & Zhang, Caizhi & Zhang, Yanyi & Deng, Chenghao & Hao, Dong & Zhu, Zhongwen & Ran, Hongxu & Cao, Dongpu, 2021. "Optimization-oriented adaptive equivalent consumption minimization strategy based on short-term demand power prediction for fuel cell hybrid vehicle," Energy, Elsevier, vol. 227(C).
    3. Liu, Ze & Zhang, Baitao & Xu, Sichuan, 2022. "Research on air mass flow-pressure combined control and dynamic performance of fuel cell system for vehicles application," Applied Energy, Elsevier, vol. 309(C).
    4. Dong Zhu & Yanbo Yang & Tiancai Ma, 2022. "Evaluation the Resistance Growth of Aged Vehicular Proton Exchange Membrane Fuel Cell Stack by Distribution of Relaxation Times," Sustainability, MDPI, vol. 14(9), pages 1-19, May.
    5. Zhang, Caizhi & Zeng, Tao & Wu, Qi & Deng, Chenghao & Chan, Siew Hwa & Liu, Zhixiang, 2021. "Improved efficiency maximization strategy for vehicular dual-stack fuel cell system considering load state of sub-stacks through predictive soft-loading," Renewable Energy, Elsevier, vol. 179(C), pages 929-944.
    6. Yuan, Hao & Dai, Haifeng & Wei, Xuezhe & Ming, Pingwen, 2020. "A novel model-based internal state observer of a fuel cell system for electric vehicles using improved Kalman filter approach," Applied Energy, Elsevier, vol. 268(C).
    7. Zeng, Tao & Xiao, Long & Chen, Jinrui & Li, Yu & Yang, Yi & Huang, Shulong & Deng, Chenghao & Zhang, Caizhi, 2023. "Feedforward-based decoupling control of air supply for vehicular fuel cell system: Methodology and experimental validation," Applied Energy, Elsevier, vol. 335(C).
    8. Zhang, Qian & Schulze, Mathias & Gazdzicki, Pawel & Friedrich, K. Andreas, 2021. "Comparison of different performance recovery procedures for polymer electrolyte membrane fuel cells," Applied Energy, Elsevier, vol. 302(C).
    9. Mezzi, Rania & Yousfi-Steiner, Nadia & Péra, Marie Cécile & Hissel, Daniel & Larger, Laurent, 2021. "An Echo State Network for fuel cell lifetime prediction under a dynamic micro-cogeneration load profile," Applied Energy, Elsevier, vol. 283(C).
    10. Fan, Ruijia & Chang, Guofeng & Xu, Yiming & Zhang, Yuanzhi, 2024. "Investigating the transient electrical behaviors in PEM fuel cells under various platinum distributions within cathode catalyst layers," Applied Energy, Elsevier, vol. 359(C).
    11. Liu, Xiaolei & Lin, Zi & Feng, Ziming, 2021. "Short-term offshore wind speed forecast by seasonal ARIMA - A comparison against GRU and LSTM," Energy, Elsevier, vol. 227(C).
    12. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    13. Ma, Jun & Cheng, Jack C.P., 2016. "Identifying the influential features on the regional energy use intensity of residential buildings based on Random Forests," Applied Energy, Elsevier, vol. 183(C), pages 193-201.
    14. Ren, Peng & Pei, Pucheng & Li, Yuehua & Wu, Ziyao & Chen, Dongfang & Huang, Shangwei & Jia, Xiaoning, 2019. "Diagnosis of water failures in proton exchange membrane fuel cell with zero-phase ohmic resistance and fixed-low-frequency impedance," Applied Energy, Elsevier, vol. 239(C), pages 785-792.
    15. Soopee, Asif & Sasmito, Agus P. & Shamim, Tariq, 2019. "Water droplet dynamics in a dead-end anode proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 233, pages 300-311.
    16. Wu, Kangcheng & Du, Qing & Zu, Bingfeng & Wang, Yupeng & Cai, Jun & Gu, Xin & Xuan, Jin & Jiao, Kui, 2021. "Enabling real-time optimization of dynamic processes of proton exchange membrane fuel cell: Data-driven approach with semi-recurrent sliding window method," Applied Energy, Elsevier, vol. 303(C).
    17. M. Sridharan, 2023. "Generalized Regression Neural Network Model Based Estimation of Global Solar Energy Using Meteorological Parameters," Annals of Data Science, Springer, vol. 10(4), pages 1107-1125, August.
    18. Somayeh Toghyani & Seyed Ali Atyabi & Xin Gao, 2021. "Enhancing the Specific Power of a PEM Fuel Cell Powered UAV with a Novel Bean-Shaped Flow Field," Energies, MDPI, vol. 14(9), pages 1-23, April.
    19. Mariz B. Arias & Sungwoo Bae, 2020. "Design Models for Power Flow Management of a Grid-Connected Solar Photovoltaic System with Energy Storage System," Energies, MDPI, vol. 13(9), pages 1-14, April.
    20. Xu Lei & Xi Zhao & Guiping Wang & Weiyu Liu, 2019. "A Novel Temperature–Hysteresis Model for Power Battery of Electric Vehicles with an Adaptive Joint Estimator on State of Charge and Power," Energies, MDPI, vol. 12(19), pages 1-24, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:208:y:2020:i:c:s0360544220314262. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.