IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i13p10712-d1188918.html
   My bibliography  Save this article

Influence of Longitudinal Wind on Hydrogen Leakage and Hydrogen Concentration Sensor Layout of Fuel Cell Vehicles

Author

Listed:
  • Xingmao Wang

    (School of Automotive Engineering, Shandong Jiaotong University, Jinan 250357, China)

  • Fengyan Yi

    (School of Automotive Engineering, Shandong Jiaotong University, Jinan 250357, China)

  • Qingqing Su

    (School of Automotive Engineering, Shandong Jiaotong University, Jinan 250357, China)

  • Jiaming Zhou

    (School of Intelligent Manufacturing, Weifang University of Science and Technology, Weifang 262700, China)

  • Yan Sun

    (School of Automotive Engineering, Shandong Jiaotong University, Jinan 250357, China)

  • Wei Guo

    (School of Automotive Engineering, Shandong Jiaotong University, Jinan 250357, China)

  • Xing Shu

    (School of Automotive Engineering, Shandong Jiaotong University, Jinan 250357, China)

Abstract

Hydrogen has the physical and chemical characteristics of being flammable, explosive and prone to leakage, and its safety is the main issue faced by the promotion of hydrogen as an energy source. The most common scene in vehicle application is the longitudinal wind generated by driving, and the original position of hydrogen concentration sensors (HCSs) did not consider the influence of longitudinal wind on the hydrogen leakage trajectory. In this paper, the computational fluid dynamics (CFD) software STAR CCM 2021.1 is used to simulate the hydrogen leakage and diffusion trajectories of fuel cell vehicles (FCVs) at five different leakage locations the longitudinal wind speeds of 0 km/h, 37.18 km/h and 114 km/h, and it is concluded that longitudinal wind prolongs the diffusion time of hydrogen to the headspace and reduces the coverage area of hydrogen in the headspace with a decrease of 81.35%. In order to achieve a good detection effect of fuel cell vehicles within the longitudinal wind scene, based on the simulated hydrogen concentration–time matrix, the scene clustering method based on vector similarity evaluation was used to reduce the leakage scene set by 33%. Then, the layout position of HCSs was optimized according to the proposed multi-scene full coverage response time minimization model, and the response time was reduced from 5 s to 1 s.

Suggested Citation

  • Xingmao Wang & Fengyan Yi & Qingqing Su & Jiaming Zhou & Yan Sun & Wei Guo & Xing Shu, 2023. "Influence of Longitudinal Wind on Hydrogen Leakage and Hydrogen Concentration Sensor Layout of Fuel Cell Vehicles," Sustainability, MDPI, vol. 15(13), pages 1-18, July.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10712-:d:1188918
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/13/10712/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/13/10712/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chi Wing To & Wan Ki Chow & Fang Ming Cheng, 2021. "Simulation of Possible Fire and Explosion Hazards of Clean Fuel Vehicles in Garages," Sustainability, MDPI, vol. 13(22), pages 1-15, November.
    2. Li, Yanfei & Kimura, Shigeru, 2021. "Economic competitiveness and environmental implications of hydrogen energy and fuel cell electric vehicles in ASEAN countries: The current and future scenarios," Energy Policy, Elsevier, vol. 148(PB).
    3. Lv, Hong & Shen, Yahao & Zheng, Tao & Zhou, Wei & Ming, Pingwen & Zhang, Cunman, 2023. "Numerical study of hydrogen leakage, diffusion, and combustion in an outdoor parking space under different parking configurations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    4. Zeng, Tao & Zhang, Caizhi & Hao, Dong & Cao, Dongpu & Chen, Jiawei & Chen, Jinrui & Li, Jin, 2020. "Data-driven approach for short-term power demand prediction of fuel cell hybrid vehicles," Energy, Elsevier, vol. 208(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen, Yahao & Lv, Hong & Zheng, Tao & Liu, Yi & Zhou, Wei & Zhang, Cunman, 2023. "Temporal and spatial evolution of hydrogen leakage and diffusion from tube fittings on fuel cell vehicles under the effect of ambient wind," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    2. Jiwon Yu & Young Jae Han & Hyewon Yang & Sugil Lee & Gildong Kim & Chulung Lee, 2022. "Promising Technology Analysis and Patent Roadmap Development in the Hydrogen Supply Chain," Sustainability, MDPI, vol. 14(21), pages 1-20, October.
    3. Haider, Minza & Davis, Matthew & Kumar, Amit, 2024. "Development of a framework to assess the greenhouse gas mitigation potential from the adoption of low-carbon road vehicles in a hydrocarbon-rich region," Applied Energy, Elsevier, vol. 358(C).
    4. Liu, Qi & Guo, Tao & Fu, Jianqin & Dai, Hongliang & Liu, Jingping, 2022. "Experimental study on the effects of injection parameters and exhaust gas recirculation on combustion, emission and performance of Atkinson cycle gasoline direct-injection engine," Energy, Elsevier, vol. 238(PB).
    5. Tian, Chenlu & Liu, Yechun & Zhang, Guiqing & Yang, Yalong & Yan, Yi & Li, Chengdong, 2024. "Transfer learning based hybrid model for power demand prediction of large-scale electric vehicles," Energy, Elsevier, vol. 300(C).
    6. Romeo Danielis & Mariangela Scorrano & Manuela Masutti & Asees Muhammad Awan & Arsalan Muhammad Khan Niazi, 2024. "The Economic Competitiveness of Hydrogen Fuel Cell-Powered Trucks: A Review of Total Cost of Ownership Estimates," Energies, MDPI, vol. 17(11), pages 1-19, May.
    7. Lázaro V. Cremades & Lluc Canals Casals, 2022. "Analysis of the Future of Mobility: The Battery Electric Vehicle Seems Just a Transitory Alternative," Energies, MDPI, vol. 15(23), pages 1-12, December.
    8. Zeng, Tao & Zhang, Caizhi & Zhang, Yanyi & Deng, Chenghao & Hao, Dong & Zhu, Zhongwen & Ran, Hongxu & Cao, Dongpu, 2021. "Optimization-oriented adaptive equivalent consumption minimization strategy based on short-term demand power prediction for fuel cell hybrid vehicle," Energy, Elsevier, vol. 227(C).
    9. Badji, Abderrezak & Abdeslam, Djaffar Ould & Chabane, Djafar & Benamrouche, Nacereddine, 2022. "Real-time implementation of improved power frequency approach based energy management of fuel cell electric vehicle considering storage limitations," Energy, Elsevier, vol. 249(C).
    10. Agustín Álvarez Coomonte & Zacarías Grande Andrade & Rocio Porras Soriano & José Antonio Lozano Galant, 2024. "Review of the Planning and Distribution Methodologies to Locate Hydrogen Infrastructure in the Territory," Energies, MDPI, vol. 17(1), pages 1-25, January.
    11. Chen, Dongfang & Pei, Pucheng & Meng, Yining & Ren, Peng & Li, Yuehua & Wang, Mingkai & Wang, Xizhong, 2022. "Novel extraction method of working condition spectrum for the lifetime prediction and energy management strategy evaluation of automotive fuel cells," Energy, Elsevier, vol. 255(C).
    12. Zhiming Zhang & Hui Ren & Song Hu & Xinfeng Zhang & Tong Zhang & Jiaming Zhou & Shangfeng Jiang & Tao Yu & Bo Deng, 2022. "Arrangement of Belleville Springs on Endplates Combined with Optimal Cross-Sectional Shape in PEMFC Stack Using Equivalent Beam Modeling and FEA," Sustainability, MDPI, vol. 14(23), pages 1-13, November.
    13. Halder, Pobitra & Babaie, Meisam & Salek, Farhad & Shah, Kalpit & Stevanovic, Svetlana & Bodisco, Timothy A. & Zare, Ali, 2024. "Performance, emissions and economic analyses of hydrogen fuel cell vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    14. Vipulesh Shardeo & Bishal Dey Sarkar, 2024. "Adoption of hydrogen‐fueled freight transportation: A strategy toward sustainability," Business Strategy and the Environment, Wiley Blackwell, vol. 33(2), pages 223-240, February.
    15. Sheng, Mingyue Selena & Sreenivasan, Ajith Viswanath & Sharp, Basil & Du, Bo, 2021. "Well-to-wheel analysis of greenhouse gas emissions and energy consumption for electric vehicles: A comparative study in Oceania," Energy Policy, Elsevier, vol. 158(C).
    16. Zhang, Caizhi & Zeng, Tao & Wu, Qi & Deng, Chenghao & Chan, Siew Hwa & Liu, Zhixiang, 2021. "Improved efficiency maximization strategy for vehicular dual-stack fuel cell system considering load state of sub-stacks through predictive soft-loading," Renewable Energy, Elsevier, vol. 179(C), pages 929-944.
    17. İnci, Mustafa & Büyük, Mehmet & Demir, Mehmet Hakan & İlbey, Göktürk, 2021. "A review and research on fuel cell electric vehicles: Topologies, power electronic converters, energy management methods, technical challenges, marketing and future aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    18. Farrell, Niall, 2023. "Policy design for green hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    19. Yang, Bo & Li, Danyang & Zeng, Chunyuan & Chen, Yijun & Guo, Zhengxun & Wang, Jingbo & Shu, Hongchun & Yu, Tao & Zhu, Jiawei, 2021. "Parameter extraction of PEMFC via Bayesian regularization neural network based meta-heuristic algorithms," Energy, Elsevier, vol. 228(C).
    20. Nektarios Koutsourakis & Ilias C. Tolias & Stella G. Giannissi & Alexandros G. Venetsanos, 2023. "Numerical Investigation of Hydrogen Jet Dispersion Below and Around a Car in a Tunnel," Energies, MDPI, vol. 16(18), pages 1-30, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10712-:d:1188918. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.