IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v299y2024ics0360544224012489.html
   My bibliography  Save this article

A novel battery abnormality diagnosis method using multi-scale normalized coefficient of variation in real-world vehicles

Author

Listed:
  • Hong, Jichao
  • Liang, Fengwei
  • Chen, Yingjie
  • Wang, Facheng
  • Zhang, Xinyang
  • Li, Kerui
  • Zhang, Huaqin
  • Yang, Jingsong
  • Zhang, Chi
  • Yang, Haixu
  • Ma, Shikun
  • Yang, Qianqian

Abstract

Accurate and efficient diagnosis of battery voltage abnormality is crucial for the safe operation of electric vehicles. This paper proposes an innovative battery voltage abnormality diagnosis method based on a normalized coefficient of variation in real-world electric vehicles. Vehicle and laboratory data are collected and analyzed, with joint preprocessing to improve data quality, and battery voltages are log-transformed to improve the contribution of anomalous voltage fluctuations. The normalized coefficient of variation is proposed to detect the fluctuation inconsistency of cell voltage, and the risk coefficient rule is formulated by Z-score and normalization. Furthermore, the validity and robustness are verified by laboratory and real-world battery faults. The results demonstrate that the optimal slide step and calculation window for real-world under-voltage fault are 10 and 40, and those for laboratory lithium plating and real-world thermal runaway are both 10 and 50, respectively. More importantly, this study introduces a battery abnormality diagnosis strategy based on the vehicle T-box, anticipated to be widely implemented to ensure the safety of real-vehicle operations. This method not only enhances the accuracy and efficiency of detecting electric vehicle battery abnormalities, but also offers a practical solution to prevent battery related faults.

Suggested Citation

  • Hong, Jichao & Liang, Fengwei & Chen, Yingjie & Wang, Facheng & Zhang, Xinyang & Li, Kerui & Zhang, Huaqin & Yang, Jingsong & Zhang, Chi & Yang, Haixu & Ma, Shikun & Yang, Qianqian, 2024. "A novel battery abnormality diagnosis method using multi-scale normalized coefficient of variation in real-world vehicles," Energy, Elsevier, vol. 299(C).
  • Handle: RePEc:eee:energy:v:299:y:2024:i:c:s0360544224012489
    DOI: 10.1016/j.energy.2024.131475
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224012489
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131475?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ma, Zhikai & Huo, Qian & Wang, Wei & Zhang, Tao, 2023. "Voltage-temperature aware thermal runaway alarming framework for electric vehicles via deep learning with attention mechanism in time-frequency domain," Energy, Elsevier, vol. 278(C).
    2. Li, Renzheng & Wang, Hui & Dai, Haifeng & Hong, Jichao & Tong, Guangyao & Chen, Xinbo, 2022. "Accurate state of charge prediction for real-world battery systems using a novel dual-dropout-based neural network," Energy, Elsevier, vol. 250(C).
    3. Hong, Jichao & Li, Kerui & Liang, Fengwei & Yang, Haixu & Zhang, Chi & Yang, Qianqian & Wang, Jiegang, 2024. "A novel state of health prediction method for battery system in real-world vehicles based on gated recurrent unit neural networks," Energy, Elsevier, vol. 289(C).
    4. Hong, Jichao & Wang, Zhenpo & Yao, Yongtao, 2019. "Fault prognosis of battery system based on accurate voltage abnormity prognosis using long short-term memory neural networks," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    5. Peng Liu & Zhenyu Sun & Zhenpo Wang & Jin Zhang, 2018. "Entropy-Based Voltage Fault Diagnosis of Battery Systems for Electric Vehicles," Energies, MDPI, vol. 11(1), pages 1-15, January.
    6. Jiang, Lulu & Deng, Zhongwei & Tang, Xiaolin & Hu, Lin & Lin, Xianke & Hu, Xiaosong, 2021. "Data-driven fault diagnosis and thermal runaway warning for battery packs using real-world vehicle data," Energy, Elsevier, vol. 234(C).
    7. Wang, Zhenpo & Hong, Jichao & Liu, Peng & Zhang, Lei, 2017. "Voltage fault diagnosis and prognosis of battery systems based on entropy and Z-score for electric vehicles," Applied Energy, Elsevier, vol. 196(C), pages 289-302.
    8. Zeng, Tao & Zhang, Caizhi & Hao, Dong & Cao, Dongpu & Chen, Jiawei & Chen, Jinrui & Li, Jin, 2020. "Data-driven approach for short-term power demand prediction of fuel cell hybrid vehicles," Energy, Elsevier, vol. 208(C).
    9. Sun, Zhenyu & Han, Yang & Wang, Zhenpo & Chen, Yong & Liu, Peng & Qin, Zian & Zhang, Zhaosheng & Wu, Zhiqiang & Song, Chunbao, 2022. "Detection of voltage fault in the battery system of electric vehicles using statistical analysis," Applied Energy, Elsevier, vol. 307(C).
    10. Huaqin Zhang & Jichao Hong & Zhezhe Wang & Guodong Wu, 2022. "State-Partial Accurate Voltage Fault Prognosis for Lithium-Ion Batteries Based on Self-Attention Networks," Energies, MDPI, vol. 15(22), pages 1-14, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Hongqian & Chen, Zheng & Shu, Xing & Shen, Jiangwei & Liu, Yonggang & Zhang, Yuanjian, 2023. "Multi-step ahead voltage prediction and voltage fault diagnosis based on gated recurrent unit neural network and incremental training," Energy, Elsevier, vol. 266(C).
    2. Bosong Zou & Lisheng Zhang & Xiaoqing Xue & Rui Tan & Pengchang Jiang & Bin Ma & Zehua Song & Wei Hua, 2023. "A Review on the Fault and Defect Diagnosis of Lithium-Ion Battery for Electric Vehicles," Energies, MDPI, vol. 16(14), pages 1-19, July.
    3. Ma, Zhikai & Huo, Qian & Wang, Wei & Zhang, Tao, 2023. "Voltage-temperature aware thermal runaway alarming framework for electric vehicles via deep learning with attention mechanism in time-frequency domain," Energy, Elsevier, vol. 278(C).
    4. Liu, Qiquan & Ma, Jian & Zhao, Xuan & Zhang, Kai & Meng, Dean, 2023. "Online diagnosis and prediction of power battery voltage comprehensive faults for electric vehicles based on multi-parameter characterization and improved K-means method," Energy, Elsevier, vol. 283(C).
    5. Xiong, Rui & Sun, Wanzhou & Yu, Quanqing & Sun, Fengchun, 2020. "Research progress, challenges and prospects of fault diagnosis on battery system of electric vehicles," Applied Energy, Elsevier, vol. 279(C).
    6. Wang, Cong & Chen, Yunxia & Zhang, Qingyuan & Zhu, Jiaxiao, 2023. "Dynamic early recognition of abnormal lithium-ion batteries before capacity drops using self-adaptive quantum clustering," Applied Energy, Elsevier, vol. 336(C).
    7. Da Li & Zhaosheng Zhang & Peng Liu & Zhenpo Wang, 2019. "DBSCAN-Based Thermal Runaway Diagnosis of Battery Systems for Electric Vehicles," Energies, MDPI, vol. 12(15), pages 1-15, August.
    8. Jiong Yang & Fanyong Cheng & Maxwell Duodu & Miao Li & Chao Han, 2022. "High-Precision Fault Detection for Electric Vehicle Battery System Based on Bayesian Optimization SVDD," Energies, MDPI, vol. 15(22), pages 1-20, November.
    9. Jichao Hong & Fengwei Liang & Xun Gong & Xiaoming Xu & Quanqing Yu, 2022. "Accurate State of Charge Estimation for Real-World Battery Systems Using a Novel Grid Search and Cross Validated Optimised LSTM Neural Network," Energies, MDPI, vol. 15(24), pages 1-14, December.
    10. Wang, Shuhui & Wang, Zhenpo & Cheng, Ximing & Zhang, Zhaosheng, 2023. "A double-layer fault diagnosis strategy for electric vehicle batteries based on Gaussian mixture model," Energy, Elsevier, vol. 281(C).
    11. Sun, Zhenyu & Han, Yang & Wang, Zhenpo & Chen, Yong & Liu, Peng & Qin, Zian & Zhang, Zhaosheng & Wu, Zhiqiang & Song, Chunbao, 2022. "Detection of voltage fault in the battery system of electric vehicles using statistical analysis," Applied Energy, Elsevier, vol. 307(C).
    12. Yang, Jiong & Cheng, Fanyong & Liu, Zhi & Duodu, Maxwell Mensah & Zhang, Mingyan, 2023. "A novel semi-supervised fault detection and isolation method for battery system of electric vehicles," Applied Energy, Elsevier, vol. 349(C).
    13. Huaqin Zhang & Jichao Hong & Zhezhe Wang & Guodong Wu, 2022. "State-Partial Accurate Voltage Fault Prognosis for Lithium-Ion Batteries Based on Self-Attention Networks," Energies, MDPI, vol. 15(22), pages 1-14, November.
    14. Huang, Peifeng & Zeng, Ganghui & He, Yanyun & Liu, Shoutong & Li, Eric & Bai, Zhonghao, 2023. "Damage evolution mechanism and early warning using long short-term memory networks for battery slight overcharge cycles," Renewable Energy, Elsevier, vol. 217(C).
    15. Liu, Qiquan & Ma, Jian & Zhao, Xuan & Zhang, Kai & Xiangli, Kang & Meng, Dean, 2024. "A novel method for fault diagnosis and type identification of cell voltage inconsistency in electric vehicles using weighted Euclidean distance evaluation and statistical analysis," Energy, Elsevier, vol. 293(C).
    16. Hong, Jichao & Wang, Zhenpo & Qu, Changhui & Zhou, Yangjie & Shan, Tongxin & Zhang, Jinghan & Hou, Yankai, 2022. "Investigation on overcharge-caused thermal runaway of lithium-ion batteries in real-world electric vehicles," Applied Energy, Elsevier, vol. 321(C).
    17. Yang, Jian & Zhang, Tiezhu & Hong, Jichao & Zhang, Hongxin & Zhao, Qinghai & Meng, Zewen, 2021. "Research on driving control strategy and Fuzzy logic optimization of a novel mechatronics-electro-hydraulic power coupling electric vehicle," Energy, Elsevier, vol. 233(C).
    18. Zhijie Duan & Luo Zhang & Lili Feng & Shuguang Yu & Zengyou Jiang & Xiaoming Xu & Jichao Hong, 2021. "Research on Economic and Operating Characteristics of Hydrogen Fuel Cell Cars Based on Real Vehicle Tests," Energies, MDPI, vol. 14(23), pages 1-19, November.
    19. Daniels, Rojo Kurian & Kumar, Vikas & Chouhan, Satyendra Singh & Prabhakar, Aneesh, 2024. "Thermal runaway fault prediction in air-cooled lithium-ion battery modules using machine learning through temperature sensors placement optimization," Applied Energy, Elsevier, vol. 355(C).
    20. Shahjalal, Mohammad & Roy, Probir Kumar & Shams, Tamanna & Fly, Ashley & Chowdhury, Jahedul Islam & Ahmed, Md. Rishad & Liu, Kailong, 2022. "A review on second-life of Li-ion batteries: prospects, challenges, and issues," Energy, Elsevier, vol. 241(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:299:y:2024:i:c:s0360544224012489. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.