Investigation on thermal efficiency of LPG cooking burner using computational fluid dynamics
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2020.117849
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Akter Lucky, Rahima & Hossain, Ijaz, 2001. "Efficiency study of Bangladeshi cookstoves with an emphasis on gas cookstoves," Energy, Elsevier, vol. 26(3), pages 221-237.
- Cadavid, Francisco J. & Cadavid, Yonatan & Amell, Andrés A. & Arrieta, Andrés E. & Echavarría, Juan D., 2014. "Numerical and experimental methodology to measure the thermal efficiency of pots on electrical stoves," Energy, Elsevier, vol. 73(C), pages 258-263.
- Pantangi, V.K. & Mishra, Subhash C. & Muthukumar, P. & Reddy, Rajesh, 2011. "Studies on porous radiant burners for LPG (liquefied petroleum gas) cooking applications," Energy, Elsevier, vol. 36(10), pages 6074-6080.
- Panigrahy, Snehasish & Mishra, Niraj Kumar & Mishra, Subhash C. & Muthukumar, P., 2016. "Numerical and experimental analyses of LPG (liquefied petroleum gas) combustion in a domestic cooking stove with a porous radiant burner," Energy, Elsevier, vol. 95(C), pages 404-414.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Muhammad Usman & Muhammad Ammar & Muddassir Ali & Muhammad Zafar & Muhammad Zeeshan, 2023. "Emissions and efficiency of an improved conventional liquefied petroleum gas cookstoves in Pakistan," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(6), pages 5427-5442, June.
- Wang, Jianyou & Zhang, Wei & Yang, Tao & Yu, Yunzu & Liu, Chuang & Li, Bin, 2022. "Numerical and experimental investigation on heat transfer enhancement by adding fins on the pot in a domestic gas stove," Energy, Elsevier, vol. 239(PE).
- Park, Yeseul & Li, Xinzhuo & Choi, Minsung & Kim, Dongmin & Lee, Joongsung & Choi, Gyungmin, 2022. "Fuel interchangeability investigation of new Russian PNG for conventional gas appliances," Energy, Elsevier, vol. 260(C).
- Deymi-Dashtebayaz, Mahdi & Rezapour, Mojtaba & Sheikhani, Hamideh & Afshoun, Hamid Reza & Barzanooni, Vahid, 2023. "Numerical and experimental analyses of a novel natural gas cooking burner with the aim of improving energy efficiency and reducing environmental pollution," Energy, Elsevier, vol. 263(PE).
- Xie, Kai & Cui, Yunjing & Qiu, Xingqi & Wang, Jianxin, 2020. "Experimental study on flame characteristics and air entrainment of diesel horizontal spray burners at two different atmospheric pressures," Energy, Elsevier, vol. 211(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Banerjee, Abhisek & Paul, Diplina, 2021. "Developments and applications of porous medium combustion: A recent review," Energy, Elsevier, vol. 221(C).
- Panigrahy, Snehasish & Mishra, Subhash C., 2018. "The combustion characteristics and performance evaluation of DME (dimethyl ether) as an alternative fuel in a two-section porous burner for domestic cooking application," Energy, Elsevier, vol. 150(C), pages 176-189.
- Hannani, S.K. & Hessari, E. & Fardadi, M. & Jeddi, M.K., 2006. "Mathematical modeling of cooking pots’ thermal efficiency using a combined experimental and neural network method," Energy, Elsevier, vol. 31(14), pages 2969-2985.
- Janvekar, Ayub Ahmed & Miskam, M.A. & Abas, Aizat & Ahmad, Zainal Arifin & Juntakan, T. & Abdullah, M.Z., 2017. "Effects of the preheat layer thickness on surface/submerged flame during porous media combustion of micro burner," Energy, Elsevier, vol. 122(C), pages 103-110.
- Devi, Sangjukta & Sahoo, Niranjan & Muthukumar, P., 2020. "Experimental studies on biogas combustion in a novel double layer inert Porous Radiant Burner," Renewable Energy, Elsevier, vol. 149(C), pages 1040-1052.
- Natanael Bolson & Maxim Yutkin & Tadeusz Patzek, 2023. "Primary Power Analysis of a Global Electrification Scenario," Sustainability, MDPI, vol. 15(19), pages 1-20, October.
- Tian, Hailin & Wang, Xiaonan & Lim, Ee Yang & Lee, Jonathan T.E. & Ee, Alvin W.L. & Zhang, Jingxin & Tong, Yen Wah, 2021. "Life cycle assessment of food waste to energy and resources: Centralized and decentralized anaerobic digestion with different downstream biogas utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
- Deb, Sunita & Muthukumar, P., 2021. "Development and performance assessment of LPG operated cluster Porous Radiant Burner for commercial cooking and industrial applications," Energy, Elsevier, vol. 219(C).
- Deymi-Dashtebayaz, Mahdi & Rezapour, Mojtaba & Sheikhani, Hamideh & Afshoun, Hamid Reza & Barzanooni, Vahid, 2023. "Numerical and experimental analyses of a novel natural gas cooking burner with the aim of improving energy efficiency and reducing environmental pollution," Energy, Elsevier, vol. 263(PE).
- Maghanaki, M. Mohammadi & Ghobadian, B. & Najafi, G. & Galogah, R. Janzadeh, 2013. "Potential of biogas production in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 702-714.
- Sutar, Kailasnath B. & M.R., Ravi & Kohli, Sangeeta, 2016. "Design of a partially aerated naturally aspirated burner for producer gas," Energy, Elsevier, vol. 116(P1), pages 773-785.
- Daioglou, Vassilis & van Ruijven, Bas J. & van Vuuren, Detlef P., 2012. "Model projections for household energy use in developing countries," Energy, Elsevier, vol. 37(1), pages 601-615.
- Muthukumar Palanisamy & Lav Kumar Kaushik & Arun Kumar Mahalingam & Sunita Deb & Pratibha Maurya & Sofia Rani Shaik & Muhammad Abdul Mujeebu, 2023. "Evolutions in Gaseous and Liquid Fuel Cook-Stove Technologies," Energies, MDPI, vol. 16(2), pages 1-37, January.
- Belén Bonet-Sánchez & Iulen Cabeza-Gil & Begoña Calvo & Jorge Grasa & Carlos Franco & Sergio Llorente & Miguel A. Martínez, 2022. "A Combined Experimental-Numerical Investigation of the Thermal Efficiency of the Vessel in Domestic Induction Systems," Mathematics, MDPI, vol. 10(5), pages 1-15, March.
- Munoz-Herrera, Claudio & Hernández, Christian & Rojas, Paula & Bernal, Luciano & Monzó, Cristóbal & Cartagena, Rodrigo & Ripoll, Nicolás & Toledo, Mario, 2023. "Experimental investigation of the co-combustion of LPG-hydrogen blends on LPG-fueled systems," Energy, Elsevier, vol. 284(C).
- Gentillon, Philippe & Southcott, Jake & Chan, Qing N. & Taylor, Robert A., 2018. "Stable flame limits for optimal radiant performance of porous media reactors for thermophotovoltaic applications using packed beds of alumina," Applied Energy, Elsevier, vol. 229(C), pages 736-744.
- Nair, Aswathy & Velamati, Ratna Kishore & Kumar, Sudarshan, 2016. "Effect OF CO2/N2 dilution on laminar burning velocity of liquid petroleum gas-air mixtures at elevated temperatures," Energy, Elsevier, vol. 100(C), pages 145-153.
- Vahidhosseini, Seyed Mohammad & Esfahani, Javad Abolfazli & Kim, Kyung Chun, 2020. "Cylindrical porous radiant burner with internal combustion regime: Energy saving analysis using response surface method," Energy, Elsevier, vol. 207(C).
- Kuntikana, Pramod & Prabhu, S.V., 2017. "Thermal investigations on methane-air premixed flame jets of multi-port burners," Energy, Elsevier, vol. 123(C), pages 218-228.
- Park, Yeseul & Li, Xinzhuo & Choi, Minsung & Kim, Dongmin & Lee, Joongsung & Choi, Gyungmin, 2022. "Fuel interchangeability investigation of new Russian PNG for conventional gas appliances," Energy, Elsevier, vol. 260(C).
More about this item
Keywords
Energy-saving burner; CFD; Thermal efficiency;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:203:y:2020:i:c:s0360544220309567. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.