Thermal performance investigation of a premixed surface flame burner used in the domestic heating boilers
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2021.121481
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Lee, Seungro & Kum, Sung-Min & Lee, Chang-Eon, 2011. "An experimental study of a cylindrical multi-hole premixed burner for the development of a condensing gas boiler," Energy, Elsevier, vol. 36(7), pages 4150-4157.
- Lee, Seungro & Kum, Sung-Min & Lee, Chang-Eon, 2011. "Performances of a heat exchanger and pilot boiler for the development of a condensing gas boiler," Energy, Elsevier, vol. 36(7), pages 3945-3951.
- Soltanian, Hossein & Targhi, Mohammad Zabetian & Pasdarshahri, Hadi, 2019. "Chemiluminescence usage in finding optimum operating range of multi-hole burners," Energy, Elsevier, vol. 180(C), pages 398-404.
- Saberi Moghaddam, Mohammad Hossein & Saei Moghaddam, Mojtaba & Khorramdel, Mohammad, 2017. "Numerical study of geometric parameters effecting temperature and thermal efficiency in a premix multi-hole flat flame burner," Energy, Elsevier, vol. 125(C), pages 654-662.
- Janvekar, Ayub Ahmed & Miskam, M.A. & Abas, Aizat & Ahmad, Zainal Arifin & Juntakan, T. & Abdullah, M.Z., 2017. "Effects of the preheat layer thickness on surface/submerged flame during porous media combustion of micro burner," Energy, Elsevier, vol. 122(C), pages 103-110.
- Hinrichs, Jörn & Felsmann, Daniel & Schweitzer-De Bortoli, Stefan & Tomczak, Heinz-Jörg & Pitsch, Heinz, 2018. "Numerical and experimental investigation of pollutant formation and emissions in a full-scale cylindrical heating unit of a condensing gas boiler," Applied Energy, Elsevier, vol. 229(C), pages 977-989.
- Yu, Byeonghun & Kum, Sung-Min & Lee, Chang-Eon & Lee, Seungro, 2013. "Combustion characteristics and thermal efficiency for premixed porous-media types of burners," Energy, Elsevier, vol. 53(C), pages 343-350.
- Najarnikoo, Mahdi & Targhi, Mohammad Zabetian & Pasdarshahri, Hadi, 2019. "Experimental study on the flame stability and color characterization of cylindrical premixed perforated burner of condensing boiler by image processing method," Energy, Elsevier, vol. 189(C).
- Liu, Fengguo & Zheng, Longfeng & Zhang, Rui, 2020. "Emissions and thermal efficiency for premixed burners in a condensing gas boiler," Energy, Elsevier, vol. 202(C).
- Kamal, M. Mustafa, 2020. "Two-line (CH∗/CO2∗) chemiluminescence technique for equivalence ratio mapping in turbulent stratified flames," Energy, Elsevier, vol. 192(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Badakhsh, Arash & Mothilal Bhagavathy, Sivapriya, 2024. "Caveats of green hydrogen for decarbonisation of heating in buildings," Applied Energy, Elsevier, vol. 353(PB).
- Yılmaz, Semih & Kumlutaş, Dilek & Özer, Özgün & Yücekaya, Utku Alp & Avcı, Hasan & Cumbul, Ahmet Yakup, 2024. "Parametric investigation of premixed gas inlet conditions effects on flow and combustion characteristics," Applied Energy, Elsevier, vol. 353(PA).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yılmaz, Semih & Kumlutaş, Dilek & Yücekaya, Utku Alp & Cumbul, Ahmet Yakup, 2021. "Prediction of the equilibrium compositions in the combustion products of a domestic boiler," Energy, Elsevier, vol. 233(C).
- Lamioni, Rachele & Bronzoni, Cristiana & Folli, Marco & Tognotti, Leonardo & Galletti, Chiara, 2022. "Feeding H2-admixtures to domestic condensing boilers: Numerical simulations of combustion and pollutant formation in multi-hole burners," Applied Energy, Elsevier, vol. 309(C).
- Yılmaz, Semih & Kumlutaş, Dilek & Özer, Özgün & Yücekaya, Utku Alp & Avcı, Hasan & Cumbul, Ahmet Yakup, 2024. "Parametric investigation of premixed gas inlet conditions effects on flow and combustion characteristics," Applied Energy, Elsevier, vol. 353(PA).
- Liu, Fengguo & Zheng, Longfeng & Zhang, Rui, 2020. "Emissions and thermal efficiency for premixed burners in a condensing gas boiler," Energy, Elsevier, vol. 202(C).
- Maznoy, Anatoly & Kirdyashkin, Alexander & Minaev, Sergey & Markov, Alexey & Pichugin, Nikita & Yakovlev, Evgeny, 2018. "A study on the effects of porous structure on the environmental and radiative characteristics of cylindrical Ni-Al burners," Energy, Elsevier, vol. 160(C), pages 399-409.
- Rolandas Paulauskas & Indrek Jõgi & Nerijus Striūgas & Dainius Martuzevičius & Kalev Erme & Jüri Raud & Martynas Tichonovas, 2019. "Application of Non-Thermal Plasma for NOx Reduction in the Flue Gases," Energies, MDPI, vol. 12(20), pages 1-13, October.
- Saberi Moghaddam, Mohammad Hossein & Saei Moghaddam, Mojtaba & Khorramdel, Mohammad, 2017. "Numerical study of geometric parameters effecting temperature and thermal efficiency in a premix multi-hole flat flame burner," Energy, Elsevier, vol. 125(C), pages 654-662.
- Najarnikoo, Mahdi & Targhi, Mohammad Zabetian & Pasdarshahri, Hadi, 2019. "Experimental study on the flame stability and color characterization of cylindrical premixed perforated burner of condensing boiler by image processing method," Energy, Elsevier, vol. 189(C).
- Soltanian, Hossein & Targhi, Mohammad Zabetian & Pasdarshahri, Hadi, 2019. "Chemiluminescence usage in finding optimum operating range of multi-hole burners," Energy, Elsevier, vol. 180(C), pages 398-404.
- Yu, Byeonghun & Kum, Sung-Min & Lee, Chang-Eon & Lee, Seungro, 2012. "An experimental study of heat transfer and pollutant emission characteristics at varying distances between the burner and the heat exchanger in a compact combustion system," Energy, Elsevier, vol. 42(1), pages 350-357.
- Vahidhosseini, Seyed Mohammad & Esfahani, Javad Abolfazli & Kim, Kyung Chun, 2020. "Cylindrical porous radiant burner with internal combustion regime: Energy saving analysis using response surface method," Energy, Elsevier, vol. 207(C).
- Lopez-Ruiz, G. & Alava, I. & Blanco, J.M., 2021. "Study on the feasibility of the micromix combustion principle in low NOx H2 burners for domestic and industrial boilers: A numerical approach," Energy, Elsevier, vol. 236(C).
- Devi, Sangjukta & Sahoo, Niranjan & Muthukumar, P., 2020. "Experimental studies on biogas combustion in a novel double layer inert Porous Radiant Burner," Renewable Energy, Elsevier, vol. 149(C), pages 1040-1052.
- Deb, Sunita & Muthukumar, P., 2021. "Development and performance assessment of LPG operated cluster Porous Radiant Burner for commercial cooking and industrial applications," Energy, Elsevier, vol. 219(C).
- Deymi-Dashtebayaz, Mahdi & Rezapour, Mojtaba & Sheikhani, Hamideh & Afshoun, Hamid Reza & Barzanooni, Vahid, 2023. "Numerical and experimental analyses of a novel natural gas cooking burner with the aim of improving energy efficiency and reducing environmental pollution," Energy, Elsevier, vol. 263(PE).
- Yu, Byeonghun & Kum, Sung-Min & Lee, Chang-Eon & Lee, Seungro, 2013. "Study on the combustion characteristics of a premixed combustion system with exhaust gas recirculation," Energy, Elsevier, vol. 61(C), pages 345-353.
- Sutar, Kailasnath B. & M.R., Ravi & Kohli, Sangeeta, 2016. "Design of a partially aerated naturally aspirated burner for producer gas," Energy, Elsevier, vol. 116(P1), pages 773-785.
- Sharma, Debojit & Lee, Bok Jik & Dash, Sukanta Kumar & Reddy, V. Mahendra, 2023. "Experimental and numerical investigation on ultra-high intensity premixed LPG- air combustion in a novel porous stack burner," Energy, Elsevier, vol. 272(C).
- E, Jiaqiang & Meng, Tian & Chen, Jingwei & Wu, Weiwei & Zhao, Xiaohuan & Zhang, Bin & Peng, Qingguo, 2021. "Effect analysis on performance enhancement of a hydrogen/air non-premixed micro combustor with sudden expansion and contraction structure," Energy, Elsevier, vol. 230(C).
- Zhuang Kang & Zhiwei Shi & Jiahao Ye & Xinghua Tian & Zhixin Huang & Hao Wang & Depeng Wei & Qingguo Peng & Yaojie Tu, 2023. "A Review of Micro Power System and Micro Combustion: Present Situation, Techniques and Prospects," Energies, MDPI, vol. 16(7), pages 1-28, April.
More about this item
Keywords
Surface burner; Chemiluminescence; Image analysis; Stability;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:236:y:2021:i:c:s0360544221017291. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.