IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v205y2020ics0360544220311634.html
   My bibliography  Save this article

Lifecycle greenhouse gas emissions of thermal energy storage implemented in a paper mill for wind energy utilization

Author

Listed:
  • Yamaki, Ayumi
  • Kanematsu, Yuichiro
  • Kikuchi, Yasunori

Abstract

Power generation by variable renewable energy (VRE) is expected to expand for decarbonization, although it is difficult to ensure stabilization of the energy demand due to fluctuations in the power output from VRE. To accelerate VRE implementation, wind-powered thermal energy systems (WTth-ES), which can provide dispatchable power using wind–thermal energy converter (WECth) and thermal energy storage (TES), have been proposed. In this study, we are tackling the installation of VRE, i.e., wind energy, by TES with WECth compared with wind turbine (WTp) in paper mills to demonstrate the applicability of TES in an industrial sector. Conventional and alternative energy systems in paper mills with TES were mathematically modeled and simulated to analyze the transmittable power output and the greenhouse gas (GHG) emissions by life cycle assessment. With the installation of TES and wind energy, transmittable power could be increased with GHG emissions reduction. However, their excess installation or unbalanced combination resulted in an increase in GHG emissions and a decrease in transmittable power. By comparing the cases, the combination of paper mill, TES, and WECth could convert thermal energy efficiently and mitigate fossil fuel consumption for multiple production of paper and power from the paper mill.

Suggested Citation

  • Yamaki, Ayumi & Kanematsu, Yuichiro & Kikuchi, Yasunori, 2020. "Lifecycle greenhouse gas emissions of thermal energy storage implemented in a paper mill for wind energy utilization," Energy, Elsevier, vol. 205(C).
  • Handle: RePEc:eee:energy:v:205:y:2020:i:c:s0360544220311634
    DOI: 10.1016/j.energy.2020.118056
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220311634
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lin, Yaxue & Alva, Guruprasad & Fang, Guiyin, 2018. "Review on thermal performances and applications of thermal energy storage systems with inorganic phase change materials," Energy, Elsevier, vol. 165(PA), pages 685-708.
    2. Alva, Guruprasad & Lin, Yaxue & Fang, Guiyin, 2018. "An overview of thermal energy storage systems," Energy, Elsevier, vol. 144(C), pages 341-378.
    3. Johansson, Viktor & Lehtveer, Mariliis & Göransson, Lisa, 2019. "Biomass in the electricity system: A complement to variable renewables or a source of negative emissions?," Energy, Elsevier, vol. 168(C), pages 532-541.
    4. Battke, Benedikt & Schmidt, Tobias S. & Grosspietsch, David & Hoffmann, Volker H., 2013. "A review and probabilistic model of lifecycle costs of stationary batteries in multiple applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 240-250.
    5. Schallenberg-Rodríguez, Julieta & García Montesdeoca, Nuria, 2018. "Spatial planning to estimate the offshore wind energy potential in coastal regions and islands. Practical case: The Canary Islands," Energy, Elsevier, vol. 143(C), pages 91-103.
    6. Hast, Aira & Syri, Sanna & Lekavičius, Vidas & Galinis, Arvydas, 2018. "District heating in cities as a part of low-carbon energy system," Energy, Elsevier, vol. 152(C), pages 627-639.
    7. Cao, Karl-Kiên & Nitto, Alejandro Nicolás & Sperber, Evelyn & Thess, André, 2018. "Expanding the horizons of power-to-heat: Cost assessment for new space heating concepts with Wind Powered Thermal Energy Systems," Energy, Elsevier, vol. 164(C), pages 925-936.
    8. Ghorbani, Narges & Makian, Hamed & Breyer, Christian, 2019. "A GIS-based method to identify potential sites for pumped hydro energy storage - Case of Iran," Energy, Elsevier, vol. 169(C), pages 854-867.
    9. Lin, Yaxue & Jia, Yuting & Alva, Guruprasad & Fang, Guiyin, 2018. "Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2730-2742.
    10. Oró, Eduard & Gil, Antoni & de Gracia, Alvaro & Boer, Dieter & Cabeza, Luisa F., 2012. "Comparative life cycle assessment of thermal energy storage systems for solar power plants," Renewable Energy, Elsevier, vol. 44(C), pages 166-173.
    11. Peters, Jens F. & Baumann, Manuel & Zimmermann, Benedikt & Braun, Jessica & Weil, Marcel, 2017. "The environmental impact of Li-Ion batteries and the role of key parameters – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 491-506.
    12. Okazaki, Toru & Shirai, Yasuyuki & Nakamura, Taketsune, 2015. "Concept study of wind power utilizing direct thermal energy conversion and thermal energy storage," Renewable Energy, Elsevier, vol. 83(C), pages 332-338.
    13. Kanematsu, Yuichiro & Oosawa, Kazutake & Okubo, Tatsuya & Kikuchi, Yasunori, 2017. "Designing the scale of a woody biomass CHP considering local forestry reformation: A case study of Tanegashima, Japan," Applied Energy, Elsevier, vol. 198(C), pages 160-172.
    14. Kikuchi, Yasunori & Kimura, Seiichiro & Okamoto, Yoshitaka & Koyama, Michihisa, 2014. "A scenario analysis of future energy systems based on an energy flow model represented as functionals of technology options," Applied Energy, Elsevier, vol. 132(C), pages 586-601.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Zongyuan & Gao, Xiaoxia & Zhang, Huanqiang & Lv, Tao & Han, Zhonghe & Zhu, Xiaoxun & Wang, Yu, 2023. "Analysis of the anisotropy aerodynamic characteristics of downstream wind turbine considering the 3D wake expansion based on coupling method," Energy, Elsevier, vol. 263(PD).
    2. Yamaki, Ayumi & Fujii, Shoma & Kanematsu, Yuichiro & Kikuchi, Yasunori, 2023. "Life cycle greenhouse gas emissions of cogeneration energy hubs at Japanese paper mills with thermal energy storage," Energy, Elsevier, vol. 270(C).
    3. Agnieszka Janik & Adam Ryszko & Marek Szafraniec, 2020. "Greenhouse Gases and Circular Economy Issues in Sustainability Reports from the Energy Sector in the European Union," Energies, MDPI, vol. 13(22), pages 1-36, November.
    4. Carmen Ferrara & Giovanni De Feo, 2021. "Environmental Assessment of the Recycled Paper Production: The Effects of Energy Supply Source," Sustainability, MDPI, vol. 13(9), pages 1-16, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yamaki, Ayumi & Fujii, Shoma & Kanematsu, Yuichiro & Kikuchi, Yasunori, 2023. "Life cycle greenhouse gas emissions of cogeneration energy hubs at Japanese paper mills with thermal energy storage," Energy, Elsevier, vol. 270(C).
    2. Du, Kun & Calautit, John & Eames, Philip & Wu, Yupeng, 2021. "A state-of-the-art review of the application of phase change materials (PCM) in Mobilized-Thermal Energy Storage (M-TES) for recovering low-temperature industrial waste heat (IWH) for distributed heat," Renewable Energy, Elsevier, vol. 168(C), pages 1040-1057.
    3. Li, Han & Li, Jinchao & Kong, Xiangfei & Long, Hao & Yang, Hua & Yao, Chengqiang, 2020. "A novel solar thermal system combining with active phase-change material heat storage wall (STS-APHSW): Dynamic model, validation and thermal performance," Energy, Elsevier, vol. 201(C).
    4. M. Mofijur & Teuku Meurah Indra Mahlia & Arridina Susan Silitonga & Hwai Chyuan Ong & Mahyar Silakhori & Muhammad Heikal Hasan & Nandy Putra & S.M. Ashrafur Rahman, 2019. "Phase Change Materials (PCM) for Solar Energy Usages and Storage: An Overview," Energies, MDPI, vol. 12(16), pages 1-20, August.
    5. Diana Enescu & Gianfranco Chicco & Radu Porumb & George Seritan, 2020. "Thermal Energy Storage for Grid Applications: Current Status and Emerging Trends," Energies, MDPI, vol. 13(2), pages 1-21, January.
    6. Mendecka, Barbara & Cozzolino, Raffaello & Leveni, Martina & Bella, Gino, 2019. "Energetic and exergetic performance evaluation of a solar cooling and heating system assisted with thermal storage," Energy, Elsevier, vol. 176(C), pages 816-829.
    7. Zhang, Yi & Tao, Wen & Wang, Kehan & Li, Dongxu, 2020. "Analysis of thermal properties of gypsum materials incorporated with microencapsulated phase change materials based on silica," Renewable Energy, Elsevier, vol. 149(C), pages 400-408.
    8. Wang, Hanxi & Xu, Jianling & Sheng, Lianxi, 2019. "Study on the comprehensive utilization of city kitchen waste as a resource in China," Energy, Elsevier, vol. 173(C), pages 263-277.
    9. Giovanni Salvatore Sau & Valerio Tripi & Anna Chiara Tizzoni & Raffaele Liberatore & Emiliana Mansi & Annarita Spadoni & Natale Corsaro & Mauro Capocelli & Tiziano Delise & Anna Della Libera, 2021. "High-Temperature Chloride-Carbonate Phase Change Material: Thermal Performances and Modelling of a Packed Bed Storage System for Concentrating Solar Power Plants," Energies, MDPI, vol. 14(17), pages 1-17, August.
    10. Okazaki, Toru, 2020. "Electric thermal energy storage and advantage of rotating heater having synchronous inertia," Renewable Energy, Elsevier, vol. 151(C), pages 563-574.
    11. Jayathunga, D.S. & Karunathilake, H.P. & Narayana, M. & Witharana, S., 2024. "Phase change material (PCM) candidates for latent heat thermal energy storage (LHTES) in concentrated solar power (CSP) based thermal applications - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    12. Tomasz Tietze & Piotr Szulc & Daniel Smykowski & Andrzej Sitka & Romuald Redzicki, 2021. "Application of Phase Change Material and Artificial Neural Networks for Smoothing of Heat Flux Fluctuations," Energies, MDPI, vol. 14(12), pages 1-17, June.
    13. Liu, Yang & Wang, Hongxia & Ayub, Iqra & Yang, Fusheng & Wu, Zhen & Zhang, Zaoxiao, 2021. "A variable cross-section annular fins type metal hydride reactor for improving the phenomenon of inhomogeneous reaction in the thermal energy storage processes," Applied Energy, Elsevier, vol. 295(C).
    14. Lechón, Yolanda & Lago, Carmen & Herrera, Israel & Gamarra, Ana Rosa & Pérula, Alberto, 2023. "Carbon benefits of different energy storage alternative end uses. Application to the Spanish case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    15. Tian, Shen & Yang, Qifan & Hui, Na & Bai, Haozhi & Shao, Shuangquan & Liu, Shengchun, 2020. "Discharging process and performance of a portable cold thermal energy storage panel driven by embedded heat pipes," Energy, Elsevier, vol. 205(C).
    16. Liu, Chenzhen & Cheng, Qingjiang & Li, Baohuan & Liu, Xinjian & Rao, Zhonghao, 2023. "Recent advances of sugar alcohols phase change materials for thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    17. Pavlos Nikolaidis, 2023. "Solar Energy Harnessing Technologies towards De-Carbonization: A Systematic Review of Processes and Systems," Energies, MDPI, vol. 16(17), pages 1-39, August.
    18. Kim, Hyunho & Zheng, Junjie & Yin, Zhenyuan & Babu, Ponnivalavan & Kumar, Sreekala & Tee, Jackson & Linga, Praveen, 2023. "Semi-clathrate hydrate slurry as a cold energy storage and transport medium: Rheological study, energy analysis and enhancement by amino acid," Energy, Elsevier, vol. 264(C).
    19. Hekimoğlu, Gökhan & Nas, Memduh & Ouikhalfan, Mohammed & Sarı, Ahmet & Tyagi, V.V. & Sharma, R.K. & Kurbetci, Şirin & Saleh, Tawfik A., 2021. "Silica fume/capric acid-stearic acid PCM included-cementitious composite for thermal controlling of buildings: Thermal energy storage and mechanical properties," Energy, Elsevier, vol. 219(C).
    20. Yupeng Feng & Xuhan Li & Haowen Wu & Chaoran Li & Man Zhang & Hairui Yang, 2023. "Critical Review of Ca(OH) 2 /CaO Thermochemical Energy Storage Materials," Energies, MDPI, vol. 16(7), pages 1-23, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:205:y:2020:i:c:s0360544220311634. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.