Expanding the horizons of power-to-heat: Cost assessment for new space heating concepts with Wind Powered Thermal Energy Systems
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2018.08.173
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Münster, Marie & Morthorst, Poul Erik & Larsen, Helge V. & Bregnbæk, Lars & Werling, Jesper & Lindboe, Hans Henrik & Ravn, Hans, 2012. "The role of district heating in the future Danish energy system," Energy, Elsevier, vol. 48(1), pages 47-55.
- Medrano, Marc & Gil, Antoni & Martorell, Ingrid & Potau, Xavi & Cabeza, Luisa F., 2010. "State of the art on high-temperature thermal energy storage for power generation. Part 2--Case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 56-72, January.
- Hirth, Lion, 2013.
"The market value of variable renewables,"
Energy Economics, Elsevier, vol. 38(C), pages 218-236.
- Lion Hirth, 2012. "The Market Value of Variable Renewables," Working Papers 2012.15, Fondazione Eni Enrico Mattei.
- Hirth, Lion, 2012. "The Market Value of Variable Renewables," Energy: Resources and Markets 122021, Fondazione Eni Enrico Mattei (FEEM).
- Li, Hailong & Campana, Pietro Elia & Tan, Yuting & Yan, Jinyue, 2018. "Feasibility study about using a stand-alone wind power driven heat pump for space heating," Applied Energy, Elsevier, vol. 228(C), pages 1486-1498.
- Hedegaard, Karsten & Mathiesen, Brian Vad & Lund, Henrik & Heiselberg, Per, 2012. "Wind power integration using individual heat pumps – Analysis of different heat storage options," Energy, Elsevier, vol. 47(1), pages 284-293.
- Kirkerud, Jon Gustav & Bolkesjø, Torjus Folsland & Trømborg, Erik, 2017. "Power-to-heat as a flexibility measure for integration of renewable energy," Energy, Elsevier, vol. 128(C), pages 776-784.
- Battke, Benedikt & Schmidt, Tobias S. & Grosspietsch, David & Hoffmann, Volker H., 2013. "A review and probabilistic model of lifecycle costs of stationary batteries in multiple applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 240-250.
- Lion Hirth, 2013. "The Market Value of Variable Renewables. The Effect of Solar and Wind Power Variability on their Relative Price," RSCAS Working Papers 2013/36, European University Institute.
- Steinke, Florian & Wolfrum, Philipp & Hoffmann, Clemens, 2013. "Grid vs. storage in a 100% renewable Europe," Renewable Energy, Elsevier, vol. 50(C), pages 826-832.
- Andrei David & Brian Vad Mathiesen & Helge Averfalk & Sven Werner & Henrik Lund, 2017. "Heat Roadmap Europe: Large-Scale Electric Heat Pumps in District Heating Systems," Energies, MDPI, vol. 10(4), pages 1-18, April.
- Quoilin, Sylvain & Broek, Martijn Van Den & Declaye, Sébastien & Dewallef, Pierre & Lemort, Vincent, 2013. "Techno-economic survey of Organic Rankine Cycle (ORC) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 168-186.
- Okazaki, Toru & Shirai, Yasuyuki & Nakamura, Taketsune, 2015. "Concept study of wind power utilizing direct thermal energy conversion and thermal energy storage," Renewable Energy, Elsevier, vol. 83(C), pages 332-338.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Qian, Jing & Sun, Xiangyu & Zhong, Xiaohui & Zeng, Jiajun & Xu, Fei & Zhou, Teng & Shi, Kezhong & Li, Qingan, 2024. "Multi-objective optimization design of the wind-to-heat system blades based on the Particle Swarm Optimization algorithm," Applied Energy, Elsevier, vol. 355(C).
- Cisek, Piotr & Taler, Dawid, 2019. "Numerical analysis and performance assessment of the Thermal Energy Storage unit aimed to be utilized in Smart Electric Thermal Storage (SETS)," Energy, Elsevier, vol. 173(C), pages 755-771.
- Okazaki, Toru, 2020. "Electric thermal energy storage and advantage of rotating heater having synchronous inertia," Renewable Energy, Elsevier, vol. 151(C), pages 563-574.
- Coppitters, Diederik & De Paepe, Ward & Contino, Francesco, 2021. "Robust design optimization of a photovoltaic-battery-heat pump system with thermal storage under aleatory and epistemic uncertainty," Energy, Elsevier, vol. 229(C).
- Yamaki, Ayumi & Kanematsu, Yuichiro & Kikuchi, Yasunori, 2020. "Lifecycle greenhouse gas emissions of thermal energy storage implemented in a paper mill for wind energy utilization," Energy, Elsevier, vol. 205(C).
- Zhong, Xiaohui & Chen, Tao & Sun, Xiangyu & Song, Juanjuan & Zeng, Jiajun, 2022. "Conventional and advanced exergy analysis of a novel wind-to-heat system," Energy, Elsevier, vol. 261(PA).
- Ma, Tengfei & Pei, Wei & Deng, Wei & Xiao, Hao & Yang, Yanhong & Tang, Chenghong, 2022. "A Nash bargaining-based cooperative planning and operation method for wind-hydrogen-heat multi-agent energy system," Energy, Elsevier, vol. 239(PE).
- Østergaard, Poul Alberg & Jantzen, Jan & Marczinkowski, Hannah Mareike & Kristensen, Michael, 2019. "Business and socioeconomic assessment of introducing heat pumps with heat storage in small-scale district heating systems," Renewable Energy, Elsevier, vol. 139(C), pages 904-914.
- Weijun Wang & Xinna Qiao, 2021. "Study on development potential of newly added wind power heating in Beijing–Tianjin—Hebei under carbon emission reduction," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(4), pages 647-660, August.
- Xingran Liu & Xianpeng Sun & Jinhong He & Da Wang & Xinyang Qiu & Shengshan Bi & Yanfei Cao, 2022. "Study on the Influence of Working-Fluid’s Thermophysical Properties on the Stirring-Heating," Energies, MDPI, vol. 15(13), pages 1-23, July.
- Sun, X.Y. & Zhong, X.H. & Zhang, M.Y. & Zhou, T., 2022. "Experimental investigation on a novel wind-to-heat system with high efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
- Vahid Arabzadeh & Peter D. Lund, 2020. "Effect of Heat Demand on Integration of Urban Large-Scale Renewable Schemes—Case of Helsinki City (60 °N)," Energies, MDPI, vol. 13(9), pages 1-17, May.
- Diana Enescu & Gianfranco Chicco & Radu Porumb & George Seritan, 2020. "Thermal Energy Storage for Grid Applications: Current Status and Emerging Trends," Energies, MDPI, vol. 13(2), pages 1-21, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kirkerud, Jon Gustav & Bolkesjø, Torjus Folsland & Trømborg, Erik, 2017. "Power-to-heat as a flexibility measure for integration of renewable energy," Energy, Elsevier, vol. 128(C), pages 776-784.
- Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
- Ländner, Eva-Maria & Märtz, Alexandra & Schöpf, Michael & Weibelzahl, Martin, 2019. "From energy legislation to investment determination: Shaping future electricity markets with different flexibility options," Energy Policy, Elsevier, vol. 129(C), pages 1100-1110.
- Eising, Manuel & Hobbie, Hannes & Möst, Dominik, 2020. "Future wind and solar power market values in Germany — Evidence of spatial and technological dependencies?," Energy Economics, Elsevier, vol. 86(C).
- Khan, Agha Salman M. & Verzijlbergh, Remco A. & Sakinci, Ozgur Can & De Vries, Laurens J., 2018. "How do demand response and electrical energy storage affect (the need for) a capacity market?," Applied Energy, Elsevier, vol. 214(C), pages 39-62.
- Javier L'opez Prol & Wolf-Peter Schill, 2020.
"The Economics of Variable Renewables and Electricity Storage,"
Papers
2012.15371, arXiv.org.
- López Prol, Javier & Schill, Wolf-Peter, 2021. "The Economics of Variable Renewables and Electricity Storage," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242463, Verein für Socialpolitik / German Economic Association.
- Thomaßen, Georg & Redl, Christian & Bruckner, Thomas, 2022. "Will the energy-only market collapse? On market dynamics in low-carbon electricity systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
- Stack, Daniel C. & Curtis, Daniel & Forsberg, Charles, 2019. "Performance of firebrick resistance-heated energy storage for industrial heat applications and round-trip electricity storage," Applied Energy, Elsevier, vol. 242(C), pages 782-796.
- Zakeri, Behnam & Syri, Sanna, 2015. "Electrical energy storage systems: A comparative life cycle cost analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 569-596.
- Keppler, Jan Horst & Quemin, Simon & Saguan, Marcelo, 2022.
"Why the sustainable provision of low-carbon electricity needs hybrid markets,"
Energy Policy, Elsevier, vol. 171(C).
- Jan-Horst Keppler & Simon Quemin & Marcelo Saguan, 2022. "Why the sustainable provision of low-carbon electricity needs hybrid markets," Post-Print hal-03964488, HAL.
- Christoph Wolter & Henrik Klinge Jacobsen & Lorenzo Zeni & Georgios Rogdakis & Nicolaos A. Cutululis, 2020. "Overplanting in offshore wind power plants in different regulatory regimes," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(3), May.
- Csereklyei, Zsuzsanna & Qu, Songze & Ancev, Tihomir, 2019.
"The effect of wind and solar power generation on wholesale electricity prices in Australia,"
Energy Policy, Elsevier, vol. 131(C), pages 358-369.
- Csereklyei, Zsuzsanna & Qu, Songze & Ancev, Tihomir, 2019. "The effect of wind and solar power generation on wholesale electricity prices in Australia," Working Papers 2019-09, University of Sydney, School of Economics, revised Mar 2019.
- Simshauser, P., 2019.
"On the impact of government-initiated CfD’s in Australia’s National Electricity Market,"
Cambridge Working Papers in Economics
1901, Faculty of Economics, University of Cambridge.
- Paul Simshauser, 2019. "On the impact of government-initiated CfD's in Australia's National Electricity Market," Working Papers EPRG 1901, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
- Wang, Jingxing & Chung, Seokhyun & AlShelahi, Abdullah & Kontar, Raed & Byon, Eunshin & Saigal, Romesh, 2021. "Look-ahead decision making for renewable energy: A dynamic “predict and store” approach," Applied Energy, Elsevier, vol. 296(C).
- Thao Pham & Killian Lemoine, 2020. "Impacts of subsidized renewable electricity generation on spot market prices in Germany : Evidence from a GARCH model with panel data," Working Papers hal-02568268, HAL.
- Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
- Karlsson, Kenneth B. & Petrović, Stefan N. & Næraa, Rikke, 2016. "Heat supply planning for the ecological housing community Munksøgård," Energy, Elsevier, vol. 115(P3), pages 1733-1747.
- Curtis, John & Lynch, Muireann Á. & Zubiate, Laura, 2016.
"The impact of the North Atlantic Oscillation on electricity markets: A case study on Ireland,"
Energy Economics, Elsevier, vol. 58(C), pages 186-198.
- Curtis, John & Lynch, Muireann Á. & Zubiate, Laura, 2015. "The Impact of the North Atlantic Oscillation on Electricity Markets: A Case Study on Ireland," Papers WP509, Economic and Social Research Institute (ESRI).
- Curtis, John & Lynch, Muireann Á. & Zubiate, Laura, 2016. "The Impact of the North Atlantic Oscillation on Electricity Markets: A case study on Ireland," Papers RB2016/3/5, Economic and Social Research Institute (ESRI).
- Wilkinson, Sam & Maticka, Martin J. & Liu, Yue & John, Michele, 2021. "The duck curve in a drying pond: The impact of rooftop PV on the Western Australian electricity market transition," Utilities Policy, Elsevier, vol. 71(C).
- Christopher Kath & Florian Ziel, 2018. "The value of forecasts: Quantifying the economic gains of accurate quarter-hourly electricity price forecasts," Papers 1811.08604, arXiv.org.
More about this item
Keywords
Wind powered thermal energy systems; Wind energy; Space heating; Thermal energy storage;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:164:y:2018:i:c:p:925-936. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.