IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v168y2019icp532-541.html
   My bibliography  Save this article

Biomass in the electricity system: A complement to variable renewables or a source of negative emissions?

Author

Listed:
  • Johansson, Viktor
  • Lehtveer, Mariliis
  • Göransson, Lisa

Abstract

Biomass is often assigned a central role in future energy system scenarios as a carbon sink, making negative greenhouse gas emissions possible through carbon capture and storage of biogenic carbon dioxide from biomass-fuelled power plants. However, biomass could also serve as a strategic complement to variable renewables by supplying electricity during hours of high residual load. In this work, we investigate the role of biomass in electricity systems with net zero or negative emissions of carbon dioxide and with different levels of biomass availability. We show that access to biomass corresponding to ca. 20% of the electricity demand in primary energy terms, is of high value to the electricity system. Biomass for flexibility purposes can be a cost-efficient support to reach a carbon neutral electricity system with the main share of electricity from wind and solar power. Biomass-fired power plants equipped with carbon capture and storage in combination with natural gas combined cycle turbines are identified as being the cost-effective choice to supply the electricity system with flexibility if the availability of biomass within the electricity system is low. In contrast, in the case of excess biomass, flexibility is supplied by biomethane-fired combined cycle turbines or by biomass-fired power plants.

Suggested Citation

  • Johansson, Viktor & Lehtveer, Mariliis & Göransson, Lisa, 2019. "Biomass in the electricity system: A complement to variable renewables or a source of negative emissions?," Energy, Elsevier, vol. 168(C), pages 532-541.
  • Handle: RePEc:eee:energy:v:168:y:2019:i:c:p:532-541
    DOI: 10.1016/j.energy.2018.11.112
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218323235
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.11.112?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Raphael Slade & Ausilio Bauen & Robert Gross, 2014. "Global bioenergy resources," Nature Climate Change, Nature, vol. 4(2), pages 99-105, February.
    2. Garðarsdóttir, Stefanía Ó. & Göransson, Lisa & Normann, Fredrik & Johnsson, Filip, 2018. "Improving the flexibility of coal-fired power generators: Impact on the composition of a cost-optimal electricity system," Applied Energy, Elsevier, vol. 209(C), pages 277-289.
    3. Harvey, Mark & Pilgrim, Sarah, 2011. "The new competition for land: Food, energy, and climate change," Food Policy, Elsevier, vol. 36(S1), pages 40-51.
    4. Johansson, V. & Thorson, L. & Goop, J. & Göransson, L. & Odenberger, M. & Reichenberg, L. & Taljegard, M. & Johnsson, F., 2017. "Value of wind power – Implications from specific power," Energy, Elsevier, vol. 126(C), pages 352-360.
    5. Joeri Rogelj & David L. McCollum & Andy Reisinger & Malte Meinshausen & Keywan Riahi, 2013. "Probabilistic cost estimates for climate change mitigation," Nature, Nature, vol. 493(7430), pages 79-83, January.
    6. Hirth, Lion, 2013. "The market value of variable renewables," Energy Economics, Elsevier, vol. 38(C), pages 218-236.
    7. Sabine Fuss & Josep G. Canadell & Glen P. Peters & Massimo Tavoni & Robbie M. Andrew & Philippe Ciais & Robert B. Jackson & Chris D. Jones & Florian Kraxner & Nebosja Nakicenovic & Corinne Le Quéré & , 2014. "Betting on negative emissions," Nature Climate Change, Nature, vol. 4(10), pages 850-853, October.
    8. Gassner, M. & Maréchal, F., 2008. "Thermo-economic optimisation of the integration of electrolysis in synthetic natural gas production from wood," Energy, Elsevier, vol. 33(2), pages 189-198.
    9. Christoph Weber, 2005. "Uncertainty in the Electric Power Industry," International Series in Operations Research and Management Science, Springer, number 978-0-387-23048-1, December.
    10. Göransson, Lisa & Goop, Joel & Odenberger, Mikael & Johnsson, Filip, 2017. "Impact of thermal plant cycling on the cost-optimal composition of a regional electricity generation system," Applied Energy, Elsevier, vol. 197(C), pages 230-240.
    11. Harvey, Mark & Pilgrim, Sarah, 2011. "The new competition for land: Food, energy, and climate change," Food Policy, Elsevier, vol. 36(Supplemen), pages 40-51, January.
    12. Hirth, Lion, 2016. "The benefits of flexibility: The value of wind energy with hydropower," Applied Energy, Elsevier, vol. 181(C), pages 210-223.
    13. Lion Hirth, 2013. "The Market Value of Variable Renewables. The Effect of Solar and Wind Power Variability on their Relative Price," RSCAS Working Papers 2013/36, European University Institute.
    14. Olauson, Jon & Bergkvist, Mikael, 2015. "Modelling the Swedish wind power production using MERRA reanalysis data," Renewable Energy, Elsevier, vol. 76(C), pages 717-725.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mac Clay, Pablo & Börner, Jan & Sellare, Jorge, 2023. "Institutional and macroeconomic stability mediate the effect of auctions on renewable energy capacity," Energy Policy, Elsevier, vol. 180(C).
    2. Lap, Tjerk & Benders, René & van der Hilst, Floor & Faaij, André, 2020. "How does the interplay between resource availability, intersectoral competition and reliability affect a low-carbon power generation mix in Brazil for 2050?," Energy, Elsevier, vol. 195(C).
    3. Maria Taljegard & Lisa Göransson & Mikael Odenberger & Filip Johnsson, 2021. "To Represent Electric Vehicles in Electricity Systems Modelling—Aggregated Vehicle Representation vs. Individual Driving Profiles," Energies, MDPI, vol. 14(3), pages 1-25, January.
    4. Yamaki, Ayumi & Kanematsu, Yuichiro & Kikuchi, Yasunori, 2020. "Lifecycle greenhouse gas emissions of thermal energy storage implemented in a paper mill for wind energy utilization," Energy, Elsevier, vol. 205(C).
    5. Dessì, Federica & Mureddu, Mauro & Ferrara, Francesca & Fermoso, Javier & Orsini, Alessandro & Sanna, Aimaro & Pettinau, Alberto, 2021. "Thermogravimetric characterisation and kinetic analysis of Nannochloropsis sp. and Tetraselmis sp. microalgae for pyrolysis, combustion and oxy-combustion," Energy, Elsevier, vol. 217(C).
    6. Lehtveer, Mariliis & Fridahl, Mathias, 2020. "Managing variable renewables with biomass in the European electricity system: Emission targets and investment preferences," Energy, Elsevier, vol. 213(C).
    7. Kunniyoor, Vijayaraj & Singh, Punit & Nadella, Karthik, 2020. "Value of closed-cycle gas turbines with design assessment," Applied Energy, Elsevier, vol. 269(C).
    8. Kaoma, Mwansa & Gheewala, Shabbir H., 2021. "Evaluation of the enabling environment for the sustainable development of rural-based bioenergy systems in Zambia," Energy Policy, Elsevier, vol. 154(C).
    9. Beiron, Johanna & Göransson, Lisa & Normann, Fredrik & Johnsson, Filip, 2022. "A multiple system level modeling approach to coupled energy markets: Incentives for combined heat and power generation at the plant, city and regional energy system levels," Energy, Elsevier, vol. 254(PB).
    10. Ball-Burack, Ari & Salas, Pablo & Mercure, Jean-Francois, 2022. "Great power, great responsibility: Assessing power sector policy for the UK’s net zero target," Energy Policy, Elsevier, vol. 168(C).
    11. Hugo Guzmán-Bello & Iosvani López-Díaz & Miguel Aybar-Mejía & Jose Atilio de Frias, 2022. "A Review of Trends in the Energy Use of Biomass: The Case of the Dominican Republic," Sustainability, MDPI, vol. 14(7), pages 1-27, March.
    12. Wajahat Ullah Khan Tareen & Muhammad Tariq Dilbar & Muhammad Farhan & Muhammad Ali Nawaz & Ali Waqar Durrani & Kamran Ali Memon & Saad Mekhilef & Mehdi Seyedmahmoudian & Ben Horan & Muhammad Amir & Mu, 2019. "Present Status and Potential of Biomass Energy in Pakistan Based on Existing and Future Renewable Resources," Sustainability, MDPI, vol. 12(1), pages 1-40, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lisa Göransson & Mariliis Lehtveer & Emil Nyholm & Maria Taljegard & Viktor Walter, 2019. "The Benefit of Collaboration in the North European Electricity System Transition—System and Sector Perspectives," Energies, MDPI, vol. 12(24), pages 1-23, December.
    2. Maria Taljegard & Lisa Göransson & Mikael Odenberger & Filip Johnsson, 2021. "To Represent Electric Vehicles in Electricity Systems Modelling—Aggregated Vehicle Representation vs. Individual Driving Profiles," Energies, MDPI, vol. 14(3), pages 1-25, January.
    3. Lisa Göransson & Caroline Granfeldt & Ann-Brith Strömberg, 2021. "Management of Wind Power Variations in Electricity System Investment Models," SN Operations Research Forum, Springer, vol. 2(2), pages 1-30, June.
    4. Klie, Leo & Madlener, Reinhard, 2022. "Optimal configuration and diversification of wind turbines: A hybrid approach to improve the penetration of wind power," Energy Economics, Elsevier, vol. 105(C).
    5. Eising, Manuel & Hobbie, Hannes & Möst, Dominik, 2020. "Future wind and solar power market values in Germany — Evidence of spatial and technological dependencies?," Energy Economics, Elsevier, vol. 86(C).
    6. Brown, Patrick R. & O'Sullivan, Francis M., 2020. "Spatial and temporal variation in the value of solar power across United States electricity markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    7. Mikovits, Christian & Wetterlund, Elisabeth & Wehrle, Sebastian & Baumgartner, Johann & Schmidt, Johannes, 2021. "Stronger together: Multi-annual variability of hydrogen production supported by wind power in Sweden," Applied Energy, Elsevier, vol. 282(PB).
    8. Krishnamurthy, Chandra Kiran B. & Vesterberg, Mattias & Böök, Herman & Lindfors, Anders V. & Svento, Rauli, 2018. "Real-time pricing revisited: Demand flexibility in the presence of micro-generation," Energy Policy, Elsevier, vol. 123(C), pages 642-658.
    9. Brown, T. & Reichenberg, L., 2021. "Decreasing market value of variable renewables can be avoided by policy action," Energy Economics, Elsevier, vol. 100(C).
    10. Đukan, Mak & Kitzing, Lena, 2023. "A bigger bang for the buck: The impact of risk reduction on renewable energy support payments in Europe," Energy Policy, Elsevier, vol. 173(C).
    11. Klaus Eisenack & Mathias Mier, 2019. "Peak-load pricing with different types of dispatchability," Journal of Regulatory Economics, Springer, vol. 56(2), pages 105-124, December.
    12. Tom Brown & Mirko Schäfer & Martin Greiner, 2019. "Sectoral Interactions as Carbon Dioxide Emissions Approach Zero in a Highly-Renewable European Energy System," Energies, MDPI, vol. 12(6), pages 1-16, March.
    13. Romeiro, Diogo Lisbona & Almeida, Edmar Luiz Fagundes de & Losekann, Luciano, 2020. "Systemic value of electricity sources – What we can learn from the Brazilian experience?," Energy Policy, Elsevier, vol. 138(C).
    14. Shahriari, Mehdi & Blumsack, Seth, 2017. "Scaling of wind energy variability over space and time," Applied Energy, Elsevier, vol. 195(C), pages 572-585.
    15. Johannes Pfeiffer, 2017. "Fossil Resources and Climate Change – The Green Paradox and Resource Market Power Revisited in General Equilibrium," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 77.
    16. Klie, Leo & Madlener, Reinhard, 2020. "Concentration Versus Diversification: A Spatial Deployment Approach to Improve the Economics of Wind Power," FCN Working Papers 2/2020, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN), revised May 2021.
    17. Philipp Beiter & Aubryn Cooperman & Eric Lantz & Tyler Stehly & Matt Shields & Ryan Wiser & Thomas Telsnig & Lena Kitzing & Volker Berkhout & Yuka Kikuchi, 2021. "Wind power costs driven by innovation and experience with further reductions on the horizon," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(5), September.
    18. Sascha Samadi, 2017. "The Social Costs of Electricity Generation—Categorising Different Types of Costs and Evaluating Their Respective Relevance," Energies, MDPI, vol. 10(3), pages 1-37, March.
    19. Obermüller, Frank, 2017. "Build Wind Capacities at Windy Locations? Assessment of System Optimal Wind Locations," EWI Working Papers 2017-9, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    20. Engelhorn, Thorsten & Müsgens, Felix, 2018. "How to estimate wind-turbine infeed with incomplete stock data: A general framework with an application to turbine-specific market values in Germany," Energy Economics, Elsevier, vol. 72(C), pages 542-557.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:168:y:2019:i:c:p:532-541. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.