IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i13p4835-d853752.html
   My bibliography  Save this article

Study on the Influence of Working-Fluid’s Thermophysical Properties on the Stirring-Heating

Author

Listed:
  • Xingran Liu

    (College of Horticulture, North West Agriculture and Forestry University, Xianyang 712100, China)

  • Xianpeng Sun

    (College of Horticulture, North West Agriculture and Forestry University, Xianyang 712100, China)

  • Jinhong He

    (College of Horticulture, North West Agriculture and Forestry University, Xianyang 712100, China)

  • Da Wang

    (College of Horticulture, North West Agriculture and Forestry University, Xianyang 712100, China)

  • Xinyang Qiu

    (College of Mechanical and Electronic Engineering, North West Agriculture and Forestry University, Xianyang 712100, China)

  • Shengshan Bi

    (School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710048, China)

  • Yanfei Cao

    (College of Horticulture, North West Agriculture and Forestry University, Xianyang 712100, China)

Abstract

The thermophysical properties of a working-fluid play an important role in the process of stirring-heating. The heating process of stirring is accompanied by two processes: the friction between the solid mechanism and the working-fluid and the viscous dissipation of the working liquid. Traditionally, the sensible heat of water-based working-fluids is low, while that of oil-based working-fluids is higher, but the load capacity is relatively low. In order to find a balance between the two, an optimal stirring working-fluid should be selected. In this study, an experimental method was used to study the heating process of 30 kinds of working-fluids. The numerical evaluation model of the effects of thermophysical properties on the comprehensive evaluation index of heat (CEIH) was established by multiple linear regression methods, and a computational fluid dynamics (CFD) tool was used to analyze the heat generation and flow field of different working-fluids in the stirring-heating device. The results show that viscous dissipation is the most important way of stirring-heating. CFD can completely replace the experiment to study the heating effect of stirring. The thermophysical properties of the working-fluid affect the upper circulation and the overall velocity of the double circulation flow. The experimental results and regression model analysis show that specific heat capacity has the greatest effect on the heating effect, but density will also play a positive role in the stirring-heating. Water-based salt solutions such as KCl can achieve a better heating effect, and oil-based working-fluids are not always the best choice.

Suggested Citation

  • Xingran Liu & Xianpeng Sun & Jinhong He & Da Wang & Xinyang Qiu & Shengshan Bi & Yanfei Cao, 2022. "Study on the Influence of Working-Fluid’s Thermophysical Properties on the Stirring-Heating," Energies, MDPI, vol. 15(13), pages 1-23, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4835-:d:853752
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/13/4835/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/13/4835/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cao, Karl-Kiên & Nitto, Alejandro Nicolás & Sperber, Evelyn & Thess, André, 2018. "Expanding the horizons of power-to-heat: Cost assessment for new space heating concepts with Wind Powered Thermal Energy Systems," Energy, Elsevier, vol. 164(C), pages 925-936.
    2. López Prol, Javier & Steininger, Karl W. & Zilberman, David, 2020. "The cannibalization effect of wind and solar in the California wholesale electricity market," Energy Economics, Elsevier, vol. 85(C).
    3. Zdankus, T. & Cerneckiene, J. & Jonynas, R. & Stelmokaitis, G. & Fokaides, P.A., 2020. "Experimental investigation of a wind to thermal energy hydraulic system," Renewable Energy, Elsevier, vol. 159(C), pages 140-150.
    4. Okazaki, Toru & Shirai, Yasuyuki & Nakamura, Taketsune, 2015. "Concept study of wind power utilizing direct thermal energy conversion and thermal energy storage," Renewable Energy, Elsevier, vol. 83(C), pages 332-338.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Okazaki, Toru, 2020. "Electric thermal energy storage and advantage of rotating heater having synchronous inertia," Renewable Energy, Elsevier, vol. 151(C), pages 563-574.
    2. Qian, Jing & Sun, Xiangyu & Zhong, Xiaohui & Zeng, Jiajun & Xu, Fei & Zhou, Teng & Shi, Kezhong & Li, Qingan, 2024. "Multi-objective optimization design of the wind-to-heat system blades based on the Particle Swarm Optimization algorithm," Applied Energy, Elsevier, vol. 355(C).
    3. Cisek, Piotr & Taler, Dawid, 2019. "Numerical analysis and performance assessment of the Thermal Energy Storage unit aimed to be utilized in Smart Electric Thermal Storage (SETS)," Energy, Elsevier, vol. 173(C), pages 755-771.
    4. Diana Enescu & Gianfranco Chicco & Radu Porumb & George Seritan, 2020. "Thermal Energy Storage for Grid Applications: Current Status and Emerging Trends," Energies, MDPI, vol. 13(2), pages 1-21, January.
    5. Yamaki, Ayumi & Kanematsu, Yuichiro & Kikuchi, Yasunori, 2020. "Lifecycle greenhouse gas emissions of thermal energy storage implemented in a paper mill for wind energy utilization," Energy, Elsevier, vol. 205(C).
    6. Ángel A. Bayod-Rújula & Juan A. Tejero-Gómez, 2022. "Analysis of the Hybridization of PV Plants with a BESS for Annual Constant Power Operation," Energies, MDPI, vol. 15(23), pages 1-18, November.
    7. Ruhnau, Oliver & Hirth, Lion & Praktiknjo, Aaron, 2020. "Heating with wind: Economics of heat pumps and variable renewables," Energy Economics, Elsevier, vol. 92(C).
    8. Thomas Pownall & Iain Soutar & Catherine Mitchell, 2021. "Re-Designing GB’s Electricity Market Design: A Conceptual Framework Which Recognises the Value of Distributed Energy Resources," Energies, MDPI, vol. 14(4), pages 1-26, February.
    9. Bolinger, Mark & Millstein, Dev & Gorman, Will & Dobson, Patrick & Jeong, Seongeun, 2023. "Mind the gap: Comparing the net value of geothermal, wind, solar, and solar+storage in the Western United States," Renewable Energy, Elsevier, vol. 205(C), pages 999-1009.
    10. Gupta, Aparna & Palepu, Sai, 2024. "Designing risk-free service for renewable wind and solar resources," European Journal of Operational Research, Elsevier, vol. 315(2), pages 715-728.
    11. Dujardin, Jérôme & Schillinger, Moritz & Kahl, Annelen & Savelsberg, Jonas & Schlecht, Ingmar & Lordan-Perret, Rebecca, 2022. "Optimized market value of alpine solar photovoltaic installations," Renewable Energy, Elsevier, vol. 186(C), pages 878-888.
    12. Brown, T. & Reichenberg, L., 2021. "Decreasing market value of variable renewables can be avoided by policy action," Energy Economics, Elsevier, vol. 100(C).
    13. Zhong, Xiaohui & Chen, Tao & Sun, Xiangyu & Song, Juanjuan & Zeng, Jiajun, 2022. "Conventional and advanced exergy analysis of a novel wind-to-heat system," Energy, Elsevier, vol. 261(PA).
    14. Menéndez, Javier & Loredo, Jorge & Galdo, Mónica & Fernández-Oro, Jesús M., 2019. "Energy storage in underground coal mines in NW Spain: Assessment of an underground lower water reservoir and preliminary energy balance," Renewable Energy, Elsevier, vol. 134(C), pages 1381-1391.
    15. Harrison-Atlas, Dylan & Murphy, Caitlin & Schleifer, Anna & Grue, Nicholas, 2022. "Temporal complementarity and value of wind-PV hybrid systems across the United States," Renewable Energy, Elsevier, vol. 201(P1), pages 111-123.
    16. Diego Rodríguez Rodríguez, 2021. "Sobre los costes, los precios y el mercado de la electricidad," Studies on the Spanish Economy eee2021-28, FEDEA.
    17. Gabrielli, Paolo & Aboutalebi, Reyhaneh & Sansavini, Giovanni, 2022. "Mitigating financial risk of corporate power purchase agreements via portfolio optimization," Energy Economics, Elsevier, vol. 109(C).
    18. López Prol, Javier & Zilberman, David, 2023. "No alarms and no surprises: Dynamics of renewable energy curtailment in California," Energy Economics, Elsevier, vol. 126(C).
    19. Shimomura, Mizue & Keeley, Alexander Ryota & Matsumoto, Ken'ichi & Tanaka, Kenta & Managi, Shunsuke, 2024. "Beyond the merit order effect: Impact of the rapid expansion of renewable energy on electricity market price," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    20. Glenk, Gunther & Reichelstein, Stefan, 2021. "Intermittent versus dispatchable power sources: An integrated competitive assessment," ZEW Discussion Papers 21-065, ZEW - Leibniz Centre for European Economic Research.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4835-:d:853752. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.