IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v204y2020ics0360544220310732.html
   My bibliography  Save this article

Investigating the performance and cost effects of nanorefrigerants in a low-temperature ORC unit for waste heat recovery

Author

Listed:
  • Kosmadakis, George
  • Neofytou, Panagiotis

Abstract

The use of nanorefrigerants in refrigeration and heat pump units increases the cycle performance, with similar effects also applied in organic Rankine cycle (ORC) units, but with very few relevant studies. For this purpose, an existing thermodynamic model for the ORC simulation is extended to account for adding Al2O3 and Cu nanoparticles (NPs) in the refrigerant, introducing their effect in the energy balance and the heat transfer and pressure drop at the different parts of the cycle. Numerical analysis of an ORC with refrigerants R245fa and R1234ze(Z) has been then conducted, with a heat source in the range of 80–120 °C and a NP mass fraction of 0–10% wt., aiming at identifying the performance improvement. The results show that the ORC efficiency increases for higher NP mass fraction and especially with Al2O3. This is mostly attributed to the expansion process with the NPs acting as internal heat sources to the vapour organic fluid, whereas the heat transfer and pressure drop improvements are minor. Finally, the preliminary cost analysis showed that the use of NPs in an ORC brings a payback period of 11.7 years with Al2O3, but with high uncertainty as revealed by the sensitivity analysis.

Suggested Citation

  • Kosmadakis, George & Neofytou, Panagiotis, 2020. "Investigating the performance and cost effects of nanorefrigerants in a low-temperature ORC unit for waste heat recovery," Energy, Elsevier, vol. 204(C).
  • Handle: RePEc:eee:energy:v:204:y:2020:i:c:s0360544220310732
    DOI: 10.1016/j.energy.2020.117966
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220310732
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117966?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Braimakis, Konstantinos & Karellas, Sotirios, 2017. "Integrated thermoeconomic optimization of standard and regenerative ORC for different heat source types and capacities," Energy, Elsevier, vol. 121(C), pages 570-598.
    2. Patrick Linke & Athanasios I. Papadopoulos & Panos Seferlis, 2015. "Systematic Methods for Working Fluid Selection and the Design, Integration and Control of Organic Rankine Cycles—A Review," Energies, MDPI, vol. 8(6), pages 1-47, May.
    3. Azmi, W.H. & Sharif, M.Z. & Yusof, T.M. & Mamat, Rizalman & Redhwan, A.A.M., 2017. "Potential of nanorefrigerant and nanolubricant on energy saving in refrigeration system – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 415-428.
    4. Ayub, Mohammad & Mitsos, Alexander & Ghasemi, Hadi, 2015. "Thermo-economic analysis of a hybrid solar-binary geothermal power plant," Energy, Elsevier, vol. 87(C), pages 326-335.
    5. Yang, Jingye & Ye, Zhenhong & Yu, Binbin & Ouyang, Hongsheng & Chen, Jiangping, 2019. "Simultaneous experimental comparison of low-GWP refrigerants as drop-in replacements to R245fa for Organic Rankine cycle application: R1234ze(Z), R1233zd(E), and R1336mzz(E)," Energy, Elsevier, vol. 173(C), pages 721-731.
    6. Ziviani, Davide & Groll, Eckhard A. & Braun, James E. & De Paepe, Michel & van den Broek, Martijn, 2018. "Analysis of an organic Rankine cycle with liquid-flooded expansion and internal regeneration (ORCLFE)," Energy, Elsevier, vol. 144(C), pages 1092-1106.
    7. Lecompte, Steven & Huisseune, Henk & van den Broek, Martijn & Vanslambrouck, Bruno & De Paepe, Michel, 2015. "Review of organic Rankine cycle (ORC) architectures for waste heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 448-461.
    8. Landelle, Arnaud & Tauveron, Nicolas & Haberschill, Philippe & Revellin, Rémi & Colasson, Stéphane, 2017. "Organic Rankine cycle design and performance comparison based on experimental database," Applied Energy, Elsevier, vol. 204(C), pages 1172-1187.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Zhang, Jian & Zhang, Wujie & Song, Gege, 2021. "Introducing machine learning and hybrid algorithm for prediction and optimization of multistage centrifugal pump in an ORC system," Energy, Elsevier, vol. 222(C).
    2. Marcin Jankowski & Aleksandra Borsukiewicz & Kamel Hooman, 2020. "Development of Decision-Making Tool and Pareto Set Analysis for Bi-Objective Optimization of an ORC Power Plant," Energies, MDPI, vol. 13(20), pages 1-27, October.
    3. Kosmadakis, George & Neofytou, Panagiotis, 2022. "Reversible high-temperature heat pump/ORC for waste heat recovery in various ships: A techno-economic assessment," Energy, Elsevier, vol. 256(C).
    4. Huixing, Zhai & Lin, Shi & Qingsong, An & Suilin, Wang & Baolin, An, 2021. "Key parameter influence mechanism and optimal working fluid screening correlation for trans-critical organic Rankine cycle with open type heat sources," Energy, Elsevier, vol. 214(C).
    5. Hui-Xing, Zhai & Wei, Dong & Lin, Shi & Qing-Song, An & Sui-Lin, Wang & Bao-Lin, An, 2022. "Theoretical selection criteria of organic Rankine cycle form for different heat sources," Energy, Elsevier, vol. 238(PC).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Pengcheng & Cao, Qing & Li, Jing & Wang, Yandong & Pei, Gang & Gao, Cai & Zhao, Hongling & Liu, Xunfen, 2020. "Effect of regenerator on the direct steam generation solar power system characterized by prolonged thermal storage and stable power conversion," Renewable Energy, Elsevier, vol. 159(C), pages 1099-1116.
    2. Guillermo Valencia Ochoa & Carlos Acevedo Peñaloza & Jorge Duarte Forero, 2019. "Thermoeconomic Optimization with PSO Algorithm of Waste Heat Recovery Systems Based on Organic Rankine Cycle System for a Natural Gas Engine," Energies, MDPI, vol. 12(21), pages 1-21, October.
    3. Hossein Nami & Amjad Anvari-Moghaddam & Ahmad Arabkoohsar & Amir Reza Razmi, 2020. "4E Analyses of a Hybrid Waste-Driven CHP–ORC Plant with Flue Gas Condensation," Sustainability, MDPI, vol. 12(22), pages 1-21, November.
    4. Marian Piwowarski & Krzysztof Kosowski & Marcin Richert, 2023. "Organic Supercritical Thermodynamic Cycles with Isothermal Turbine," Energies, MDPI, vol. 16(12), pages 1-17, June.
    5. Lee, Ung & Mitsos, Alexander, 2017. "Optimal multicomponent working fluid of organic Rankine cycle for exergy transfer from liquefied natural gas regasification," Energy, Elsevier, vol. 127(C), pages 489-501.
    6. Zhang, Yi-Fan & Li, Ming-Jia & Ren, Xiao & Duan, Xin-Yue & Wu, Chia-Jung & Xi, Huan & Feng, Yong-Qiang & Gong, Liang & Hung, Tzu-Chen, 2022. "Effect of heat source supplies on system behaviors of ORCs with different capacities: An experimental comparison between the 3 kW and 10 kW unit," Energy, Elsevier, vol. 254(PB).
    7. Braimakis, Konstantinos & Mikelis, Angelos & Charalampidis, Antonios & Karellas, Sotirios, 2020. "Exergetic performance of CO2 and ultra-low GWP refrigerant mixtures as working fluids in ORC for waste heat recovery," Energy, Elsevier, vol. 203(C).
    8. Li, Xiaoya & Xu, Bin & Tian, Hua & Shu, Gequn, 2021. "Towards a novel holistic design of organic Rankine cycle (ORC) systems operating under heat source fluctuations and intermittency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    9. Xu, Weicong & Deng, Shuai & Su, Wen & Zhang, Ying & Zhao, Li & Yu, Zhixin, 2018. "How to approach Carnot cycle via zeotropic working fluid: Research methodology and case study," Energy, Elsevier, vol. 144(C), pages 576-586.
    10. Dawo, Fabian & Fleischmann, Jonas & Kaufmann, Florian & Schifflechner, Christopher & Eyerer, Sebastian & Wieland, Christoph & Spliethoff, Hartmut, 2021. "R1224yd(Z), R1233zd(E) and R1336mzz(Z) as replacements for R245fa: Experimental performance, interaction with lubricants and environmental impact," Applied Energy, Elsevier, vol. 288(C).
    11. Cao, Shuang & Xu, Jinliang & Miao, Zheng & Liu, Xiulong & Zhang, Ming & Xie, Xuewang & Li, Zhi & Zhao, Xiaoli & Tang, Guihua, 2019. "Steady and transient operation of an organic Rankine cycle power system," Renewable Energy, Elsevier, vol. 133(C), pages 284-294.
    12. Braimakis, Konstantinos & Karellas, Sotirios, 2018. "Exergetic optimization of double stage Organic Rankine Cycle (ORC)," Energy, Elsevier, vol. 149(C), pages 296-313.
    13. Xu, Weicong & Deng, Shuai & Zhao, Li & Zhang, Yue & Li, Shuangjun, 2019. "Performance analysis on novel thermodynamic cycle under the guidance of 3D construction method," Applied Energy, Elsevier, vol. 250(C), pages 478-492.
    14. Mondejar, M.E. & Andreasen, J.G. & Pierobon, L. & Larsen, U. & Thern, M. & Haglind, F., 2018. "A review of the use of organic Rankine cycle power systems for maritime applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 126-151.
    15. Imran, Muhammad & Pili, Roberto & Usman, Muhammad & Haglind, Fredrik, 2020. "Dynamic modeling and control strategies of organic Rankine cycle systems: Methods and challenges," Applied Energy, Elsevier, vol. 276(C).
    16. Michael Papapetrou & George Kosmadakis & Francesco Giacalone & Bartolomé Ortega-Delgado & Andrea Cipollina & Alessandro Tamburini & Giorgio Micale, 2019. "Evaluation of the Economic and Environmental Performance of Low-Temperature Heat to Power Conversion using a Reverse Electrodialysis – Multi-Effect Distillation System," Energies, MDPI, vol. 12(17), pages 1-26, August.
    17. Eyerer, Sebastian & Dawo, Fabian & Rieger, Florian & Schuster, Andreas & Aumann, Richard & Wieland, Christoph & Spliethoff, Hartmut, 2019. "Experimental and numerical investigation of direct liquid injection into an ORC twin-screw expander," Energy, Elsevier, vol. 178(C), pages 867-878.
    18. Wu, Xialai & Chen, Junghui & Xie, Lei, 2018. "Integrated operation design and control of Organic Rankine Cycle systems with disturbances," Energy, Elsevier, vol. 163(C), pages 115-129.
    19. Marenco-Porto, Carlos A. & Nieto-Londoño, César & Lopera, Leonardo & Escudero-Atehortua, Ana & Giraldo, Mauricio & Jouhara, Hussam, 2023. "Evaluation of Organic Rankine Cycle alternatives for the cement industry using Analytic Hierarchy Process (AHP) methodology and energy-economic-environmental (3E) analysis," Energy, Elsevier, vol. 281(C).
    20. Dovichi Filho, Fernando Bruno & Lora, Electo Eduardo Silva & Palacio, Jose Carlos Escobar & Venturini, Osvaldo José & Jaén, René Lesme, 2023. "An approach to technology selection in bioelectricity technical potential assessment: A Brazilian case study," Energy, Elsevier, vol. 272(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:204:y:2020:i:c:s0360544220310732. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.