IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v25y2023i6d10.1007_s10668-022-02273-y.html
   My bibliography  Save this article

Emissions and efficiency of an improved conventional liquefied petroleum gas cookstoves in Pakistan

Author

Listed:
  • Muhammad Usman

    (National of University of Sciences and Technology)

  • Muhammad Ammar

    (Government College University)

  • Muddassir Ali

    (University of Engineering and Technology)

  • Muhammad Zafar

    (University of the Punjab)

  • Muhammad Zeeshan

    (National of University of Sciences and Technology)

Abstract

Liquefied petroleum gas (LPG) is considered as one of the most convenient and clean fuels for domestic cookstoves and is a popular choice, particularly in urban areas. Considering the limited fossil fuel resources, increasing emissions with ever increasing LPG demands, it is important to improve thermal efficiency and reduce emissions of the existing LPG cooking stoves by incorporating design modifications. This study reports design modification in the form of loading height optimization and consequent evaluation of thermal performance and emissions of two of the most widely used LPG fueled medium-scale cooking stoves, Sa and Sb, in Pakistan. Using two standard pots Pa and Pb, Water Boiling Test (WBT) 4.2.3 is adopted to evaluate the thermal efficiencies, and an emission collection hood is used for the assessment of carbon monoxide (CO) emissions. In the first part of the study, variation in the performance of stoves is evaluated with varying loading heights at fixed thermal power input. Once the loading height was optimized, in the second part, the efficiencies of the stoves were evaluated with varying thermal inputs at fixed/optimum loading height. Averaging for both pots, the thermal efficiency of stove Sa was increased by around 20% and that of stove Sb by 13% during the high power phase (HPP) of WBT after loading height optimization. The results were comparable for the low power phase (LPP). Both stoves showed a decline in thermal efficiencies with increase in thermal power input. At optimum loading heights, the lowest CO emissions were observed. The results also indicate that the optimal loading height would reduce the LPG consumption and cost for both cookstoves.

Suggested Citation

  • Muhammad Usman & Muhammad Ammar & Muddassir Ali & Muhammad Zafar & Muhammad Zeeshan, 2023. "Emissions and efficiency of an improved conventional liquefied petroleum gas cookstoves in Pakistan," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(6), pages 5427-5442, June.
  • Handle: RePEc:spr:endesu:v:25:y:2023:i:6:d:10.1007_s10668-022-02273-y
    DOI: 10.1007/s10668-022-02273-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-022-02273-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-022-02273-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pier Mannuccio Mannucci & Massimo Franchini, 2017. "Health Effects of Ambient Air Pollution in Developing Countries," IJERPH, MDPI, vol. 14(9), pages 1-8, September.
    2. Deb, Sunita & Muthukumar, P., 2021. "Development and performance assessment of LPG operated cluster Porous Radiant Burner for commercial cooking and industrial applications," Energy, Elsevier, vol. 219(C).
    3. Rohan R. Pande & Vilas R. Kalamkar & Milind Kshirsagar, 2019. "Making the popular clean: improving the traditional multipot biomass cookstove in Maharashtra, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(3), pages 1391-1410, June.
    4. Panigrahy, Snehasish & Mishra, Niraj Kumar & Mishra, Subhash C. & Muthukumar, P., 2016. "Numerical and experimental analyses of LPG (liquefied petroleum gas) combustion in a domestic cooking stove with a porous radiant burner," Energy, Elsevier, vol. 95(C), pages 404-414.
    5. Sneha Gautam & Ajay Pillarisetti & Ankit Yadav & Deepak Singh & Narendra Arora & Kirk Smith, 2019. "Daily average exposures to carbon monoxide from combustion of biomass fuels in rural households of Haryana, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(5), pages 2567-2575, October.
    6. Chen, Zhichao & Li, Zhengqi & Zhu, Qunyi & Jing, Jianping, 2011. "Gas/particle flow and combustion characteristics and NOx emissions of a new swirl coal burner," Energy, Elsevier, vol. 36(2), pages 709-723.
    7. Wichangarm, Mana & Matthujak, Anirut & Sriveerakul, Thanarath & Sucharitpwatskul, Sedthawatt & Phongthanapanich, Sutthisak, 2020. "Investigation on thermal efficiency of LPG cooking burner using computational fluid dynamics," Energy, Elsevier, vol. 203(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deymi-Dashtebayaz, Mahdi & Rezapour, Mojtaba & Sheikhani, Hamideh & Afshoun, Hamid Reza & Barzanooni, Vahid, 2023. "Numerical and experimental analyses of a novel natural gas cooking burner with the aim of improving energy efficiency and reducing environmental pollution," Energy, Elsevier, vol. 263(PE).
    2. Xiang Wu & Lindong Liu & Xiaowei Luo & Jianwu Chen & Jingwen Dai, 2018. "Study on Flow Field Characteristics of the 90° Rectangular Elbow in the Exhaust Hood of a Uniform Push–Pull Ventilation Device," IJERPH, MDPI, vol. 15(12), pages 1-12, December.
    3. Myung-Jae Hwang & Jong-Hun Kim & Hae-Kwan Cheong, 2020. "Short-Term Impacts of Ambient Air Pollution on Health-Related Quality of Life: A Korea Health Panel Survey Study," IJERPH, MDPI, vol. 17(23), pages 1-11, December.
    4. Wichangarm, Mana & Matthujak, Anirut & Sriveerakul, Thanarath & Sucharitpwatskul, Sedthawatt & Phongthanapanich, Sutthisak, 2020. "Investigation on thermal efficiency of LPG cooking burner using computational fluid dynamics," Energy, Elsevier, vol. 203(C).
    5. Jagriti Saini & Maitreyee Dutta & Gonçalo Marques, 2020. "Indoor Air Quality Monitoring Systems Based on Internet of Things: A Systematic Review," IJERPH, MDPI, vol. 17(14), pages 1-22, July.
    6. Mingguang Liu & Jue Zhang & Gaoyang Li, 2024. "Can Energy-Consuming Rights Trading Policies Help to Curb Air Pollution? Evidence from China," Energies, MDPI, vol. 17(15), pages 1-24, August.
    7. Ahmad Alkhatib & Lawrence Achilles Nnyanzi & Brian Mujuni & Geofrey Amanya & Charles Ibingira, 2021. "Preventing Multimorbidity with Lifestyle Interventions in Sub-Saharan Africa: A New Challenge for Public Health in Low and Middle-Income Countries," IJERPH, MDPI, vol. 18(23), pages 1-14, November.
    8. Vahidhosseini, Seyed Mohammad & Esfahani, Javad Abolfazli & Kim, Kyung Chun, 2020. "Cylindrical porous radiant burner with internal combustion regime: Energy saving analysis using response surface method," Energy, Elsevier, vol. 207(C).
    9. Wei Chen & Jian Chen & Guopeng Yin, 2022. "Exploring side effects of ridesharing services in urban China: role of pollution–averting behavior," Electronic Commerce Research, Springer, vol. 22(4), pages 1007-1034, December.
    10. Marc Fadel & Eliane Farah & Nansi Fakhri & Frédéric Ledoux & Dominique Courcot & Charbel Afif, 2024. "A Comprehensive Review of PM-Related Studies in Industrial Proximity: Insights from the East Mediterranean Middle East Region," Sustainability, MDPI, vol. 16(20), pages 1-44, October.
    11. Janvekar, Ayub Ahmed & Miskam, M.A. & Abas, Aizat & Ahmad, Zainal Arifin & Juntakan, T. & Abdullah, M.Z., 2017. "Effects of the preheat layer thickness on surface/submerged flame during porous media combustion of micro burner," Energy, Elsevier, vol. 122(C), pages 103-110.
    12. Mattia Acito & Cristina Fatigoni & Milena Villarini & Massimo Moretti, 2022. "Cytogenetic Effects in Children Exposed to Air Pollutants: A Systematic Review and Meta-Analysis," IJERPH, MDPI, vol. 19(11), pages 1-17, May.
    13. Daniela Varrica & Maria Grazia Alaimo, 2022. "Determination of Water-Soluble Trace Elements in the PM 10 and PM 2.5 of Palermo Town (Italy)," IJERPH, MDPI, vol. 20(1), pages 1-13, December.
    14. Sylvester Dodzi Nyadanu & Gizachew Assefa Tessema & Ben Mullins & Bernard Kumi-Boateng & Michelle Lee Bell & Gavin Pereira, 2020. "Ambient Air Pollution, Extreme Temperatures and Birth Outcomes: A Protocol for an Umbrella Review, Systematic Review and Meta-Analysis," IJERPH, MDPI, vol. 17(22), pages 1-18, November.
    15. Dalia M. Muñoz-Pizza & Mariana Villada-Canela & M. A. Reyna & José Luis Texcalac-Sangrador & Jesús Serrano-Lomelin & Álvaro Osornio-Vargas, 2020. "Assessing the Influence of Socioeconomic Status and Air Pollution Levels on the Public Perception of Local Air Quality in a Mexico-US Border City," IJERPH, MDPI, vol. 17(13), pages 1-22, June.
    16. Balasooriya, Namal N. & Bandara, Jayatilleke S. & Rohde, Nicholas, 2022. "Air pollution and health outcomes: Evidence from Black Saturday Bushfires in Australia," Social Science & Medicine, Elsevier, vol. 306(C).
    17. Kuntikana, Pramod & Prabhu, S.V., 2017. "Thermal investigations on methane-air premixed flame jets of multi-port burners," Energy, Elsevier, vol. 123(C), pages 218-228.
    18. Chen, Zhichao & Qiao, Yanyu & Guan, Shuo & Wang, Zhenwang & Zheng, Yu & Zeng, Lingyan & Li, Zhengqi, 2022. "Effect of inner and outer secondary air ratios on ignition, C and N conversion process of pulverized coal in swirl burner under sub-stoichiometric ratio," Energy, Elsevier, vol. 239(PD).
    19. Xie, Kai & Cui, Yunjing & Qiu, Xingqi & Wang, Jianxin, 2020. "Experimental study on flame characteristics and air entrainment of diesel horizontal spray burners at two different atmospheric pressures," Energy, Elsevier, vol. 211(C).
    20. Jelonia T. Rumph & Victoria R. Stephens & Joanie L. Martin & LaKendria K. Brown & Portia L. Thomas & Ayorinde Cooley & Kevin G. Osteen & Kaylon L. Bruner-Tran, 2022. "Uncovering Evidence: Associations between Environmental Contaminants and Disparities in Women’s Health," IJERPH, MDPI, vol. 19(3), pages 1-22, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:25:y:2023:i:6:d:10.1007_s10668-022-02273-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.