IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v202y2020ics0360544220309105.html
   My bibliography  Save this article

The effect of the tractor driving system on its performance and fuel consumption

Author

Listed:
  • Moinfar, AbdolMajid
  • Shahgholi, Gholamhossein
  • Gilandeh, Yousef Abbaspour
  • Gundoshmian, Tarahom Mesri

Abstract

Improving machine performance and optimum energy usage are great importance in mechanized agriculture. The purpose of the study was to assess the tractor driving system including rear-wheel drive (RWD), four-wheel drive (4WD) and front-wheel drive (FWD) effect on the tractor performance and its fuel use during tillage operation. Then the field experiments were conducted to investigate the effect of driving system type. Moreover the tire inflation pressure of 170, 200, and 230 kPa, ballast weights of 0, 60, and 120 kg, and pulling force of 2, 6, and 10 kN on the Goldoni tractor performance were examined. The results indicated that the 4WD system had more impact on the rolling resistance than other factors. The trend of draft force represented that using the 4WD system allows achieving a higher pulling force without exceeding the allowable slip. In comparison, the FWD and RWD systems exceeded the allowable slip of the 6–10 kN draft force. At a pulling force of 2 kN, the minimum fuel consumption was corresponded to the RWD system while the maximum fuel consumption corresponded to the 4WD system. But in the pulling force of 10 kN, the situation was different and the type of driving system had a significant effect on reducing fuel consumption and the minimum fuel consumption was achieved for the 4WD system.

Suggested Citation

  • Moinfar, AbdolMajid & Shahgholi, Gholamhossein & Gilandeh, Yousef Abbaspour & Gundoshmian, Tarahom Mesri, 2020. "The effect of the tractor driving system on its performance and fuel consumption," Energy, Elsevier, vol. 202(C).
  • Handle: RePEc:eee:energy:v:202:y:2020:i:c:s0360544220309105
    DOI: 10.1016/j.energy.2020.117803
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220309105
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117803?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Taghavifar, Hamid & Mardani, Aref, 2015. "Evaluating the effect of tire parameters on required drawbar pull energy model using adaptive neuro-fuzzy inference system," Energy, Elsevier, vol. 85(C), pages 586-593.
    2. Janulevičius, Algirdas & Damanauskas, Vidas, 2015. "How to select air pressures in the tires of MFWD (mechanical front-wheel drive) tractor to minimize fuel consumption for the case of reasonable wheel slip," Energy, Elsevier, vol. 90(P1), pages 691-700.
    3. Kumar, Sanjeev & Noori, Md Tabish & Pandey, K.P., 2019. "Performance characteristics of mode of ballast on energy efficiency indices of agricultural tyre in different terrain condition in controlled soil bin environment," Energy, Elsevier, vol. 182(C), pages 48-56.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rana Shahzad Noor & Fiaz Hussain & Muhammad Umair & Muhammad Umar Farooq & Abu Saad & Yong Sun, 2020. "Silage Corn Production Under Different Planting Methods In Rainfed Agriculture System: An Energy Analysis," Big Data In Agriculture (BDA), Zibeline International Publishing, vol. 2(1), pages 32-35:2, August.
    2. Li, Xianzhe & Liu, Mengnan & Hu, Chenming & Yan, Xianghai & Zhao, Sixia & Zhang, Mingzhu & Xu, Liyou, 2024. "Parameters collaborative optimization design and innovation verification approach for fuel cell distributed drive electric tractor," Energy, Elsevier, vol. 292(C).
    3. Md. Abu Ayub Siddique & Seung-Yun Baek & Seung-Min Baek & Hyeon-Ho Jeon & Jun-Ho Lee & Mo-A Son & Su-Young Yoon & Yong-Joo Kim & Ryu-Gap Lim, 2023. "The Selection of an Energy-Saving Engine Mode Based on the Power Delivery and Fuel Consumption of a 95 kW Tractor during Rotary Tillage," Agriculture, MDPI, vol. 13(7), pages 1-16, July.
    4. Adis Puška & Miroslav Nedeljković & Živče Šarkoćević & Zoran Golubović & Vladica Ristić & Ilija Stojanović, 2022. "Evaluation of Agricultural Machinery Using Multi-Criteria Analysis Methods," Sustainability, MDPI, vol. 14(14), pages 1-17, July.
    5. Zhang, Sheng-li & Wen, Chang-kai & Ren, Wen & Luo, Zhen-hao & Xie, Bin & Zhu, Zhong-xiang & Chen, Zhong-ju, 2023. "A joint control method considering travel speed and slip for reducing energy consumption of rear wheel independent drive electric tractor in ploughing," Energy, Elsevier, vol. 263(PD).
    6. Rudolf Abrahám & Radoslav Majdan & Katarína Kollárová & Zdenko Tkáč & Štefan Hajdu & Ľubomír Kubík & Soňa Masarovičová, 2022. "Fatigue Analysis of Spike Segment of Special Tractor Wheels in Terms of Design Improvement for Chernozem Soil," Agriculture, MDPI, vol. 12(4), pages 1-17, March.
    7. Zhenhao Luo & Jihang Wang & Jing Wu & Shengli Zhang & Zhongju Chen & Bin Xie, 2023. "Research on a Hydraulic Cylinder Pressure Control Method for Efficient Traction Operation in Electro-Hydraulic Hitch System of Electric Tractors," Agriculture, MDPI, vol. 13(8), pages 1-18, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhenhao Luo & Jihang Wang & Jing Wu & Shengli Zhang & Zhongju Chen & Bin Xie, 2023. "Research on a Hydraulic Cylinder Pressure Control Method for Efficient Traction Operation in Electro-Hydraulic Hitch System of Electric Tractors," Agriculture, MDPI, vol. 13(8), pages 1-18, August.
    2. Taghavifar, Hamid & Mardani, Aref & Hosseinloo, Ashkan Haji, 2015. "Appraisal of artificial neural network-genetic algorithm based model for prediction of the power provided by the agricultural tractors," Energy, Elsevier, vol. 93(P2), pages 1704-1710.
    3. Chetan Badgujar & Sanjoy Das & Dania Martinez Figueroa & Daniel Flippo, 2023. "Application of Computational Intelligence Methods in Agricultural Soil–Machine Interaction: A Review," Agriculture, MDPI, vol. 13(2), pages 1-39, January.
    4. Janulevičius, Algirdas & Damanauskas, Vidas, 2015. "How to select air pressures in the tires of MFWD (mechanical front-wheel drive) tractor to minimize fuel consumption for the case of reasonable wheel slip," Energy, Elsevier, vol. 90(P1), pages 691-700.
    5. Rudolf Abrahám & Radoslav Majdan & Katarína Kollárová & Zdenko Tkáč & Štefan Hajdu & Ľubomír Kubík & Soňa Masarovičová, 2022. "Fatigue Analysis of Spike Segment of Special Tractor Wheels in Terms of Design Improvement for Chernozem Soil," Agriculture, MDPI, vol. 12(4), pages 1-17, March.
    6. Mohammad Askari & Yousef Abbaspour-Gilandeh & Ebrahim Taghinezhad & Ahmed Mohamed El Shal & Rashad Hegazy & Mahmoud Okasha, 2021. "Applying the Response Surface Methodology (RSM) Approach to Predict the Tractive Performance of an Agricultural Tractor during Semi-Deep Tillage," Agriculture, MDPI, vol. 11(11), pages 1-14, October.
    7. Weronika Ptak & Jarosław Czarnecki & Marek Brennensthul & Krzysztof Lejman & Agata Małecka, 2023. "Evaluation of Tires Acting on Soil in Field Conditions Using the 3D Scanning Method," Agriculture, MDPI, vol. 13(5), pages 1-14, May.
    8. Roberto Fanigliulo & Marcello Biocca & Renato Grilli & Laura Fornaciari & Pietro Gallo & Stefano Benigni & Paolo Mattei & Daniele Pochi, 2022. "Assessment of the Performance of Agricultural Tires Using a Mobile Test Bench," Agriculture, MDPI, vol. 13(1), pages 1-22, December.
    9. Šarauskis, Egidijus & Vaitauskienė, Kristina & Romaneckas, Kęstutis & Jasinskas, Algirdas & Butkus, Vidmantas & Kriaučiūnienė, Zita, 2017. "Fuel consumption and CO2 emission analysis in different strip tillage scenarios," Energy, Elsevier, vol. 118(C), pages 957-968.
    10. Song, Weiming & Zhou, Jianan & Li, Yujie & Li, Shu & Yang, Jian, 2021. "Utilization of waste tire powder for gaseous fuel generation via CO2 gasification using waste heat in converter vaporization cooling flue," Renewable Energy, Elsevier, vol. 173(C), pages 283-296.
    11. Zhang, Sheng-li & Wen, Chang-kai & Ren, Wen & Luo, Zhen-hao & Xie, Bin & Zhu, Zhong-xiang & Chen, Zhong-ju, 2023. "A joint control method considering travel speed and slip for reducing energy consumption of rear wheel independent drive electric tractor in ploughing," Energy, Elsevier, vol. 263(PD).
    12. Kun-Jung Kim & Kee-Ho Yu, 2020. "Multidisciplinary Design Optimization for a Solar-Powered Exploration Rover Considering the Restricted Power Requirement," Energies, MDPI, vol. 13(24), pages 1-28, December.
    13. Wang, Xudong & Wang, Qi & Wang, Wei & Cui, Yongjie & Song, Yuling, 2023. "Performance investigation of piezoelectric-mechanical electromagnetic compound vibration energy harvester for electric tractor," Energy, Elsevier, vol. 281(C).
    14. Wen, Chang-kai & Zhang, Sheng-li & Xie, Bin & Song, Zheng-he & Li, Tong-hui & Jia, Fang & Han, Jian-gang, 2022. "Design and verification innovative approach of dual-motor power coupling drive systems for electric tractors," Energy, Elsevier, vol. 247(C).
    15. Shafaei, S.M. & Mousazadeh, H., 2023. "Motion energy perspective of tracked locomotion system of autonomous tractor-trailer robot," Energy, Elsevier, vol. 264(C).
    16. Vilma Naujokienė & Kristina Lekavičienė & Egidijus Šarauskis & Asta Bendoraitytė, 2022. "Using a Soil Bioregeneration Approach to Reduce Soil Compaction and Financial Costs of Planting Winter Wheat and Rapeseed," Agriculture, MDPI, vol. 12(5), pages 1-13, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:202:y:2020:i:c:s0360544220309105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.