IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i4p471-d780548.html
   My bibliography  Save this article

Fatigue Analysis of Spike Segment of Special Tractor Wheels in Terms of Design Improvement for Chernozem Soil

Author

Listed:
  • Rudolf Abrahám

    (Institute of Agricultural Engineering, Transport and Bioenergetics, Faculty of Engineering, Slovak University of Agriculture in Nitra, 949 76 Nitra, Slovakia)

  • Radoslav Majdan

    (Institute of Agricultural Engineering, Transport and Bioenergetics, Faculty of Engineering, Slovak University of Agriculture in Nitra, 949 76 Nitra, Slovakia)

  • Katarína Kollárová

    (Information and Coordination Centre of Research, Faculty of Engineering, Slovak University of Agriculture in Nitra, 949 76 Nitra, Slovakia)

  • Zdenko Tkáč

    (Institute of Agricultural Engineering, Transport and Bioenergetics, Faculty of Engineering, Slovak University of Agriculture in Nitra, 949 76 Nitra, Slovakia)

  • Štefan Hajdu

    (Institute of Design and Engineering Technologies, Faculty of Engineering, Slovak University of Agriculture in Nitra, 949 76 Nitra, Slovakia)

  • Ľubomír Kubík

    (Institute of Electrical Engineering, Automation, Informatics and Physics, Faculty of Engineering, Slovak University of Agriculture in Nitra, 949 76 Nitra, Slovakia)

  • Soňa Masarovičová

    (Department of Geotechnics, Faculty of Civil Engineering, University of Žilina, 010 26 Žilina, Slovakia)

Abstract

The driving wheels affect the tractive efficiency, fuel consumption, and soil compaction. This study presents the fatigue analysis of a spike segment that is the main part of an innovative driving wheels designed to improve tractor tractive performance. The design improvement was proposed for Chernozem soil allowing the full penetration of spikes. The spike segment was loaded by forces resulting from the maximum drawbar pull at 100% wheel slip and penetrometer resistance. A drawbar pull increase caused by the spike tires was also calculated. The experiments were performed using a subcompact tractor in the first gear on a grass field at soil moisture 18.8%. Gerber theory was used for the fatigue analysis performed using ANSYS software. The dependances of the safety factor on the horizontal rod diameter and the number of load cycles was constructed. The safety factor of 1.73 calculated for the spike segment made of steel S355 is suitable for the reduction of the actual horizontal rod diameter (12 mm). The fatigue analysis showed a safety factor of 1.28 at 100,000 load cycles in the case of a reduced diameter (10 mm). A diameter of 8 mm was also simulated, but the calculated safety factors do not allow it in terms of safe operation.

Suggested Citation

  • Rudolf Abrahám & Radoslav Majdan & Katarína Kollárová & Zdenko Tkáč & Štefan Hajdu & Ľubomír Kubík & Soňa Masarovičová, 2022. "Fatigue Analysis of Spike Segment of Special Tractor Wheels in Terms of Design Improvement for Chernozem Soil," Agriculture, MDPI, vol. 12(4), pages 1-17, March.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:4:p:471-:d:780548
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/4/471/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/4/471/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Janulevičius, Algirdas & Damanauskas, Vidas, 2015. "How to select air pressures in the tires of MFWD (mechanical front-wheel drive) tractor to minimize fuel consumption for the case of reasonable wheel slip," Energy, Elsevier, vol. 90(P1), pages 691-700.
    2. Moinfar, AbdolMajid & Shahgholi, Gholamhossein & Gilandeh, Yousef Abbaspour & Gundoshmian, Tarahom Mesri, 2020. "The effect of the tractor driving system on its performance and fuel consumption," Energy, Elsevier, vol. 202(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhenhao Luo & Jihang Wang & Jing Wu & Shengli Zhang & Zhongju Chen & Bin Xie, 2023. "Research on a Hydraulic Cylinder Pressure Control Method for Efficient Traction Operation in Electro-Hydraulic Hitch System of Electric Tractors," Agriculture, MDPI, vol. 13(8), pages 1-18, August.
    2. Zhang, Sheng-li & Wen, Chang-kai & Ren, Wen & Luo, Zhen-hao & Xie, Bin & Zhu, Zhong-xiang & Chen, Zhong-ju, 2023. "A joint control method considering travel speed and slip for reducing energy consumption of rear wheel independent drive electric tractor in ploughing," Energy, Elsevier, vol. 263(PD).
    3. Md. Abu Ayub Siddique & Seung-Yun Baek & Seung-Min Baek & Hyeon-Ho Jeon & Jun-Ho Lee & Mo-A Son & Su-Young Yoon & Yong-Joo Kim & Ryu-Gap Lim, 2023. "The Selection of an Energy-Saving Engine Mode Based on the Power Delivery and Fuel Consumption of a 95 kW Tractor during Rotary Tillage," Agriculture, MDPI, vol. 13(7), pages 1-16, July.
    4. Rana Shahzad Noor & Fiaz Hussain & Muhammad Umair & Muhammad Umar Farooq & Abu Saad & Yong Sun, 2020. "Silage Corn Production Under Different Planting Methods In Rainfed Agriculture System: An Energy Analysis," Big Data In Agriculture (BDA), Zibeline International Publishing, vol. 2(1), pages 32-35:2, August.
    5. Mohammad Askari & Yousef Abbaspour-Gilandeh & Ebrahim Taghinezhad & Ahmed Mohamed El Shal & Rashad Hegazy & Mahmoud Okasha, 2021. "Applying the Response Surface Methodology (RSM) Approach to Predict the Tractive Performance of an Agricultural Tractor during Semi-Deep Tillage," Agriculture, MDPI, vol. 11(11), pages 1-14, October.
    6. Moinfar, AbdolMajid & Shahgholi, Gholamhossein & Gilandeh, Yousef Abbaspour & Gundoshmian, Tarahom Mesri, 2020. "The effect of the tractor driving system on its performance and fuel consumption," Energy, Elsevier, vol. 202(C).
    7. Adis Puška & Miroslav Nedeljković & Živče Šarkoćević & Zoran Golubović & Vladica Ristić & Ilija Stojanović, 2022. "Evaluation of Agricultural Machinery Using Multi-Criteria Analysis Methods," Sustainability, MDPI, vol. 14(14), pages 1-17, July.
    8. Šarauskis, Egidijus & Vaitauskienė, Kristina & Romaneckas, Kęstutis & Jasinskas, Algirdas & Butkus, Vidmantas & Kriaučiūnienė, Zita, 2017. "Fuel consumption and CO2 emission analysis in different strip tillage scenarios," Energy, Elsevier, vol. 118(C), pages 957-968.
    9. Wang, Xudong & Wang, Qi & Wang, Wei & Cui, Yongjie & Song, Yuling, 2023. "Performance investigation of piezoelectric-mechanical electromagnetic compound vibration energy harvester for electric tractor," Energy, Elsevier, vol. 281(C).
    10. Li, Xianzhe & Liu, Mengnan & Hu, Chenming & Yan, Xianghai & Zhao, Sixia & Zhang, Mingzhu & Xu, Liyou, 2024. "Parameters collaborative optimization design and innovation verification approach for fuel cell distributed drive electric tractor," Energy, Elsevier, vol. 292(C).
    11. Wen, Chang-kai & Zhang, Sheng-li & Xie, Bin & Song, Zheng-he & Li, Tong-hui & Jia, Fang & Han, Jian-gang, 2022. "Design and verification innovative approach of dual-motor power coupling drive systems for electric tractors," Energy, Elsevier, vol. 247(C).
    12. Vilma Naujokienė & Kristina Lekavičienė & Egidijus Šarauskis & Asta Bendoraitytė, 2022. "Using a Soil Bioregeneration Approach to Reduce Soil Compaction and Financial Costs of Planting Winter Wheat and Rapeseed," Agriculture, MDPI, vol. 12(5), pages 1-13, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:4:p:471-:d:780548. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.