IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v202y2020ics0360544220308070.html
   My bibliography  Save this article

Internal flow field and heat transfer investigation inside the working chamber of a scroll compressor

Author

Listed:
  • Rak, Józef
  • Pietrowicz, Sławomir

Abstract

The paper analyzes the influence of specific parameters such as scroll vane shape, discharge pressure and the rotational speed of a scroll compressor, on the thermal balance inside of a working chamber with tangential leakages. A two-dimensional numerical model of unsteady flow including leakages between working chambers and a special numerical grid deformation procedure is proposed. The developed set of governing equations of mass conservation, momentum, and energy is solved using the Finite Volume Method. In order to determine the upper limit of the heat transfer between vanes and the working medium - air and carbon dioxide, three cases such as: both vanes are assumed to be adiabatic, on one vane a constant temperature is applied and both vanes held at a constant temperature, are investigated. The average values of the Nusselt number inside a working chamber were elaborated and compared with other relations available in the literature, called the lumped model. It was found that tangential leakages have a high effect on thermal processes. A new relation to the Nusselt number including leakages is proposed. After the introduction of the correction factor, the deviation from the lumped model is reduced to less than 15% compared to the numerical model.

Suggested Citation

  • Rak, Józef & Pietrowicz, Sławomir, 2020. "Internal flow field and heat transfer investigation inside the working chamber of a scroll compressor," Energy, Elsevier, vol. 202(C).
  • Handle: RePEc:eee:energy:v:202:y:2020:i:c:s0360544220308070
    DOI: 10.1016/j.energy.2020.117700
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220308070
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117700?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Olmedo, Luis Eric & Mounier, Violette & Mendoza, Luis Carlos & Schiffmann, Jürg, 2018. "Dimensionless correlations and performance maps of scroll expanders for micro-scale Organic Rankine Cycles," Energy, Elsevier, vol. 156(C), pages 520-533.
    2. Song, Panpan & Wei, Mingshan & Zhang, Yangjun & Sun, Liwei & Emhardt, Simon & Zhuge, Weilin, 2018. "The impact of a bilateral symmetric discharge structure on the performance of a scroll expander for ORC power generation system," Energy, Elsevier, vol. 158(C), pages 458-470.
    3. Liu, Chao & Wang, Shukun & Zhang, Cheng & Li, Qibin & Xu, Xiaoxiao & Huo, Erguang, 2019. "Experimental study of micro-scale organic Rankine cycle system based on scroll expander," Energy, Elsevier, vol. 188(C).
    4. Saidur, R. & Rahim, N.A. & Hasanuzzaman, M., 2010. "A review on compressed-air energy use and energy savings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(4), pages 1135-1153, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaoran Li & Weifeng Wu & Jing Zhang & Chengqiang Guo & Feng Ke & Fuqiang Jiang, 2023. "Analysis of 3D Transient Flow in a High-Speed Scroll Refrigeration Compressor," Energies, MDPI, vol. 16(7), pages 1-18, March.
    2. Massimo Cardone & Bonaventura Gargiulo, 2020. "Numerical Simulation and Experimental Validation of an Oil Free Scroll Compressor," Energies, MDPI, vol. 13(22), pages 1-11, November.
    3. Kui Lu & Ibrahim A. Sultan & Truong H. Phung, 2023. "A Literature Review of the Positive Displacement Compressor: Current Challenges and Future Opportunities," Energies, MDPI, vol. 16(20), pages 1-25, October.
    4. Xiao Qu & Yantao Shi & Jiongjiong Cai, 2022. "Target Force Curve Searching Method for Axial Electromagnetic Dynamic Balance of Scroll Compressor," Energies, MDPI, vol. 15(5), pages 1-17, February.
    5. Wang, Jun & Han, Yi & Pan, Shiyang & Wang, Zengli & Cui, Dong & Geng, Maofei, 2022. "Design and development of an oil-free double-scroll air compressor used in a PEM fuel cell system," Renewable Energy, Elsevier, vol. 199(C), pages 840-851.
    6. Jian Sun & Bin Peng & Bingguo Zhu, 2021. "Performance Analysis and Test Research of PEMFC Oil-Free Positive Displacement Compressor for Vehicle," Energies, MDPI, vol. 14(21), pages 1-18, November.
    7. Yuheng Du & Shuang Li & Michael Pekris & Wei Li & Guohong Tian, 2023. "Surrogate-Assisted Multi-Objective Optimisation of Transcritical Carbon Dioxide Scroll Expander Flank Clearance Based on Computational Fluid Dynamics," Energies, MDPI, vol. 16(14), pages 1-19, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fatigati, Fabio & Di Bartolomeo, Marco & Cipollone, Roberto, 2020. "On the effects of leakages in Sliding Rotary Vane Expanders," Energy, Elsevier, vol. 192(C).
    2. Emhardt, Simon & Tian, Guohong & Song, Panpan & Chew, John & Wei, Mingshan, 2020. "CFD modelling of small scale ORC scroll expanders using variable wall thicknesses," Energy, Elsevier, vol. 199(C).
    3. Vittorini, Diego & Cipollone, Roberto, 2016. "Energy saving potential in existing industrial compressors," Energy, Elsevier, vol. 102(C), pages 502-515.
    4. Yoon, Hae-Sung & Kim, Eun-Seob & Kim, Min-Soo & Lee, Jang-Yeob & Lee, Gyu-Bong & Ahn, Sung-Hoon, 2015. "Towards greener machine tools – A review on energy saving strategies and technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 870-891.
    5. Rahman, Ataur & Razzak, Fadhilah & Afroz, Rafia & AKM, Mohiuddin & Hawlader, MNA, 2015. "Power generation from waste of IC engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 382-395.
    6. Campana, Claudio & Cioccolanti, Luca & Renzi, Massimiliano & Caresana, Flavio, 2019. "Experimental analysis of a small-scale scroll expander for low-temperature waste heat recovery in Organic Rankine Cycle," Energy, Elsevier, vol. 187(C).
    7. Fábio de Oliveira Neves & Henrique Ewbank & José Arnaldo Frutuoso Roveda & Andrea Trianni & Fernando Pinhabel Marafão & Sandra Regina Monteiro Masalskiene Roveda, 2022. "Economic and Production-Related Implications for Industrial Energy Efficiency: A Logistic Regression Analysis on Cross-Cutting Technologies," Energies, MDPI, vol. 15(4), pages 1-19, February.
    8. Madlool, N.A. & Saidur, R. & Rahim, N.A. & Kamalisarvestani, M., 2013. "An overview of energy savings measures for cement industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 18-29.
    9. Mekhilef, S. & Saidur, R. & Safari, A., 2011. "A review on solar energy use in industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1777-1790, May.
    10. Wasbari, F. & Bakar, R.A. & Gan, L.M. & Tahir, M.M. & Yusof, A.A., 2017. "A review of compressed-air hybrid technology in vehicle system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 935-953.
    11. Du Plessis, Gideon Edgar & Liebenberg, Leon & Mathews, Edward Henry, 2013. "The use of variable speed drives for cost-effective energy savings in South African mine cooling systems," Applied Energy, Elsevier, vol. 111(C), pages 16-27.
    12. Emhardt, Simon & Tian, Guohong & Song, Panpan & Chew, John & Wei, Mingshan, 2022. "CFD analysis of the influence of variable wall thickness on the aerodynamic performance of small scale ORC scroll expanders," Energy, Elsevier, vol. 244(PA).
    13. Gu, Zhengzhao & Feng, Kewen & Ge, Lei & Quan, Long, 2023. "Dynamic modeling and optimization of organic Rankine cycle in the waste heat recovery of the hydraulic system," Energy, Elsevier, vol. 263(PB).
    14. Ulf Hummel & Peter Radgen & Sercan Ülker & Ralph Schelle, 2021. "Findings from Measurements of the Electric Power Demand of Air Compressors," Energies, MDPI, vol. 14(24), pages 1-11, December.
    15. Fabio Fatigati & Marco Di Bartolomeo & Davide Di Battista & Roberto Cipollone, 2020. "Experimental Validation of a New Modeling for the Design Optimization of a Sliding Vane Rotary Expander Operating in an ORC-Based Power Unit," Energies, MDPI, vol. 13(16), pages 1-23, August.
    16. Salvatori, Simone & Benedetti, Miriam & Bonfà, Francesca & Introna, Vito & Ubertini, Stefano, 2018. "Inter-sectorial benchmarking of compressed air generation energy performance: Methodology based on real data gathering in large and energy-intensive industrial firms," Applied Energy, Elsevier, vol. 217(C), pages 266-280.
    17. Hernan Hernandez-Herrera & Jorge I. Silva-Ortega & Vicente Leonel Mart nez Diaz & Zaid Garc a Sanchez & Gilberto Gonz lez Garc a & Sandra M. Escorcia & Habid E. Zarate, 2020. "Energy Savings Measures in Compressed Air Systems," International Journal of Energy Economics and Policy, Econjournals, vol. 10(3), pages 414-422.
    18. Jubeh, Naser M. & Najjar, Yousef S.H., 2012. "Power augmentation with CAES (compressed air energy storage) by air injection or supercharging makes environment greener," Energy, Elsevier, vol. 38(1), pages 228-235.
    19. Vansh Vyas & Hyun-woo Jeon & Chao Wang, 2021. "An Integrated Energy Simulation Model of a Compressed Air System for Sustainable Manufacturing: A Time-Discretized Approach," Sustainability, MDPI, vol. 13(18), pages 1-28, September.
    20. Yuheng Du & Shuang Li & Michael Pekris & Wei Li & Guohong Tian, 2023. "Surrogate-Assisted Multi-Objective Optimisation of Transcritical Carbon Dioxide Scroll Expander Flank Clearance Based on Computational Fluid Dynamics," Energies, MDPI, vol. 16(14), pages 1-19, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:202:y:2020:i:c:s0360544220308070. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.