IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i5p1693-d757610.html
   My bibliography  Save this article

Target Force Curve Searching Method for Axial Electromagnetic Dynamic Balance of Scroll Compressor

Author

Listed:
  • Xiao Qu

    (School of Automation and Electrical Engineer, Zhejiang University of Science and Technology, Hangzhou 310023, China)

  • Yantao Shi

    (School of Automation and Electrical Engineer, Zhejiang University of Science and Technology, Hangzhou 310023, China)

  • Jiongjiong Cai

    (School of Automation and Electrical Engineer, Zhejiang University of Science and Technology, Hangzhou 310023, China)

Abstract

In order to explore the axial electromagnetic dynamic balance force curve of a scroll compressor under the action of thermal energy, radial clearance, mechanism friction, and other factors in actual working conditions, an axial force exploration method that can automatically approach sections is proposed in this paper. Considering the dynamic response ability of the electromagnetic balance system, an automatic optimization algorithm of the partition number was proposed to find the optimal partition number in order to achieve the optimal tracking effect. An experimental platform was built to test the effect of the segmented tracking method on calibrating the deviation between the theoretical axial force curve and the real curve. The results show that the curve construction method proposed in this paper has convergence. This method can automatically and accurately construct the axial balance force curve required by the electromagnetic dynamic balance. Through the automatic optimization algorithm, the standard error (RMSE) between the target curve and the theoretical curve was reduced from 290 to 22.6, and the number of partitions with the lowest standard error was 20. The results provide a useful reference for the accurate, automatic, and efficient exploration of the actual axial sealing force of the scroll compressor.

Suggested Citation

  • Xiao Qu & Yantao Shi & Jiongjiong Cai, 2022. "Target Force Curve Searching Method for Axial Electromagnetic Dynamic Balance of Scroll Compressor," Energies, MDPI, vol. 15(5), pages 1-17, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1693-:d:757610
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/5/1693/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/5/1693/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Giovanna Cavazzini & Francesco Giacomel & Alberto Benato & Francesco Nascimben & Guido Ardizzon, 2021. "Analysis of the Inner Fluid-Dynamics of Scroll Compressors and Comparison between CFD Numerical and Modelling Approaches," Energies, MDPI, vol. 14(4), pages 1-28, February.
    2. Rak, Józef & Pietrowicz, Sławomir, 2020. "Internal flow field and heat transfer investigation inside the working chamber of a scroll compressor," Energy, Elsevier, vol. 202(C).
    3. Tao Liu & Zaixin Wu, 2015. "Modeling of Top Scroll Profile Using Equidistant-Curve Approach for a Scroll Compressor," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-8, June.
    4. Jai Pyo Sung & Joon Hong Boo & Eui Guk Jung, 2020. "Transient Thermodynamic Modeling of a Scroll Compressor Using R22 Refrigerant," Energies, MDPI, vol. 13(15), pages 1-21, July.
    5. N. A. Fountas & R. Benhadj-Djilali & C. I. Stergiou & N. M. Vaxevanidis, 2019. "An integrated framework for optimizing sculptured surface CNC tool paths based on direct software object evaluation and viral intelligence," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1581-1599, April.
    6. Massimo Cardone & Bonaventura Gargiulo, 2020. "Numerical Simulation and Experimental Validation of an Oil Free Scroll Compressor," Energies, MDPI, vol. 13(22), pages 1-11, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jian Sun & Bin Peng & Bingguo Zhu, 2021. "Performance Analysis and Test Research of PEMFC Oil-Free Positive Displacement Compressor for Vehicle," Energies, MDPI, vol. 14(21), pages 1-18, November.
    2. Massimo Cardone & Bonaventura Gargiulo, 2020. "Numerical Simulation and Experimental Validation of an Oil Free Scroll Compressor," Energies, MDPI, vol. 13(22), pages 1-11, November.
    3. Yuheng Du & Shuang Li & Michael Pekris & Wei Li & Guohong Tian, 2023. "Surrogate-Assisted Multi-Objective Optimisation of Transcritical Carbon Dioxide Scroll Expander Flank Clearance Based on Computational Fluid Dynamics," Energies, MDPI, vol. 16(14), pages 1-19, July.
    4. Wang, Jun & Han, Yi & Pan, Shiyang & Wang, Zengli & Cui, Dong & Geng, Maofei, 2022. "Design and development of an oil-free double-scroll air compressor used in a PEM fuel cell system," Renewable Energy, Elsevier, vol. 199(C), pages 840-851.
    5. Benedetto Nastasi & Massimiliano Manfren & Michel Noussan, 2021. "Open Data and Models for Energy and Environment," Energies, MDPI, vol. 14(15), pages 1-2, July.
    6. Guo, Yi & Wang, Qi & Cao, Junhao & Diao, Anna & Peng, Xueyuan, 2024. "Effects of operating parameters on the performance of an embedded two-piston compressor system for green hydrogen," Renewable Energy, Elsevier, vol. 225(C).
    7. Kui Lu & Ibrahim A. Sultan & Truong H. Phung, 2023. "A Literature Review of the Positive Displacement Compressor: Current Challenges and Future Opportunities," Energies, MDPI, vol. 16(20), pages 1-25, October.
    8. Xiaoran Li & Weifeng Wu & Jing Zhang & Chengqiang Guo & Feng Ke & Fuqiang Jiang, 2023. "Analysis of 3D Transient Flow in a High-Speed Scroll Refrigeration Compressor," Energies, MDPI, vol. 16(7), pages 1-18, March.
    9. Xiaoqian Zhang & Hanshan Li, 2022. "A Target Damage Assessment Mathematical Model and Calculation Method Based on the Intersection of Warhead Fragment and Target Mechanism," Mathematics, MDPI, vol. 10(17), pages 1-16, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:5:p:1693-:d:757610. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.