IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v197y2020ics0360544220303893.html
   My bibliography  Save this article

Design and performance evaluation of an innovative solar-nuclear complementarity power system using the S–CO2 Brayton cycle

Author

Listed:
  • Wang, Gang
  • Wang, Cheng
  • Chen, Zeshao
  • Hu, Peng

Abstract

In this paper, in order to deepen the grid penetration of solar energy, an innovative hybrid solar-nuclear complementarity power (SNCP) system using the supercritical CO2 Brayton cycle is proposed. A solar tower thermal system and a small modular lead-cooled fast reactor (LFR) are coupled in this system. The KCl–MgCl2 salt is chosen as both the heat transfer and energy storage materials for the solar energy block. The simulation model of the SNCP system is established by using the Ebsilon Professional code. Design point performance of the SNCP system is evaluated. The results demonstrate that the SNCP system has an incremental electric power of 77.6 MW compared with the standalone small LFR. The ratio of the incremental electric power to the total net electric power can be 31.1%. Moreover, the performance investigation of the SNCP system under the varying solar irradiance condition is conducted. The results reveal that with the solar irradiance increased, the net electric power and the ratio of the incremental electric power to the net electric power both increase. The SNCP system can operate stably under the pre-set modes and the operation behavior simulation results are in agreement with the pre-set operation strategy.

Suggested Citation

  • Wang, Gang & Wang, Cheng & Chen, Zeshao & Hu, Peng, 2020. "Design and performance evaluation of an innovative solar-nuclear complementarity power system using the S–CO2 Brayton cycle," Energy, Elsevier, vol. 197(C).
  • Handle: RePEc:eee:energy:v:197:y:2020:i:c:s0360544220303893
    DOI: 10.1016/j.energy.2020.117282
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220303893
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117282?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Baharoon, Dhyia Aidroos & Rahman, Hasimah Abdul & Omar, Wan Zaidi Wan & Fadhl, Saeed Obaid, 2015. "Historical development of concentrating solar power technologies to generate clean electricity efficiently – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 996-1027.
    2. Vujić, Jasmina & Bergmann, Ryan M. & Škoda, Radek & Miletić, Marija, 2012. "Small modular reactors: Simpler, safer, cheaper?," Energy, Elsevier, vol. 45(1), pages 288-295.
    3. Wang, Kun & He, Ya-Ling & Zhu, Han-Hui, 2017. "Integration between supercritical CO2 Brayton cycles and molten salt solar power towers: A review and a comprehensive comparison of different cycle layouts," Applied Energy, Elsevier, vol. 195(C), pages 819-836.
    4. Wang, Gang & Yao, Yubo & Chen, Zeshao & Hu, Peng, 2019. "Thermodynamic and optical analyses of a hybrid solar CPV/T system with high solar concentrating uniformity based on spectral beam splitting technology," Energy, Elsevier, vol. 166(C), pages 256-266.
    5. Wang, Gang & Wang, Fasi & Chen, Zeshao & Hu, Peng & Cao, Ruifeng, 2019. "Experimental study and optical analyses of a multi-segment plate (MSP) concentrator for solar concentration photovoltaic (CPV) system," Renewable Energy, Elsevier, vol. 134(C), pages 284-291.
    6. Peterseim, Juergen H. & White, Stuart & Tadros, Amir & Hellwig, Udo, 2014. "Concentrating solar power hybrid plants – Enabling cost effective synergies," Renewable Energy, Elsevier, vol. 67(C), pages 178-185.
    7. Cocco, Daniele & Serra, Fabio, 2015. "Performance comparison of two-tank direct and thermocline thermal energy storage systems for 1 MWe class concentrating solar power plants," Energy, Elsevier, vol. 81(C), pages 526-536.
    8. Garcia, Humberto E. & Chen, Jun & Kim, Jong S. & Vilim, Richard B. & Binder, William R. & Bragg Sitton, Shannon M. & Boardman, Richard D. & McKellar, Michael G. & Paredis, Christiaan J.J., 2016. "Dynamic performance analysis of two regional Nuclear Hybrid Energy Systems," Energy, Elsevier, vol. 107(C), pages 234-258.
    9. Al-Sulaiman, Fahad A. & Atif, Maimoon, 2015. "Performance comparison of different supercritical carbon dioxide Brayton cycles integrated with a solar power tower," Energy, Elsevier, vol. 82(C), pages 61-71.
    10. Baker, T.E. & Epiney, A.S. & Rabiti, C. & Shittu, E., 2018. "Optimal sizing of flexible nuclear hybrid energy system components considering wind volatility," Applied Energy, Elsevier, vol. 212(C), pages 498-508.
    11. Wang, Gang & Wang, Fasi & Shen, Fan & Jiang, Tieliu & Chen, Zeshao & Hu, Peng, 2020. "Experimental and optical performances of a solar CPV device using a linear Fresnel reflector concentrator," Renewable Energy, Elsevier, vol. 146(C), pages 2351-2361.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Shijie & Li, Liushuai & Huo, Erguang & Yu, Yujie & Huang, Rui & Wang, Shukun, 2024. "Parameters analysis and techno-economic comparison of various ORCs and sCO2 cycles as the power cycle of Lead–Bismuth molten nuclear micro-reactor," Energy, Elsevier, vol. 295(C).
    2. Wang, Di & Han, Xinrui & Li, Haoyu & Li, Xiaoli, 2023. "Dynamic simulation and parameter analysis of solar-coal hybrid power plant based on the supercritical CO2 Brayton cycle," Energy, Elsevier, vol. 272(C).
    3. Wang, Gang & Zhang, Zhen & Lin, Jianqing, 2024. "Multi-energy complementary power systems based on solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    4. Wang, Gang & Zhang, Zhen & Chen, Zeshao, 2023. "Design and performance evaluation of a novel CPV-T system using nano-fluid spectrum filter and with high solar concentrating uniformity," Energy, Elsevier, vol. 267(C).
    5. Dang, Chaolei & Cheng, Kunlin & Fan, Junhao & Wang, Yilin & Qin, Jiang & Liu, Guodong, 2023. "Performance analysis of fuel vapor turbine and closed-Brayton-cycle combined power generation system for hypersonic vehicles," Energy, Elsevier, vol. 266(C).
    6. Wu, Haoran & Chen, Heng & Fan, Lanxin & Pan, Peiyuan & Xu, Gang & Wu, Lining, 2024. "Performance analysis of a novel co-generation system integrating a small modular reactor and multiple hydrogen production equipment considering peak shaving," Energy, Elsevier, vol. 302(C).
    7. Wang, Gang & He, Dongyou & Wang, Fasi & Chen, Zeshao, 2024. "Design and performance estimate of a novel linear fresnel reflector solar-gas combined system for producing electricity and hydrogen," Renewable Energy, Elsevier, vol. 227(C).
    8. Du, Yadong & Hu, Chenxing & Yang, Ce & Wang, Haimei & Dong, Wuqiang, 2022. "Size optimization of heat exchanger and thermoeconomic assessment for supercritical CO2 recompression Brayton cycle applied in marine," Energy, Elsevier, vol. 239(PD).
    9. Wang, Gang & Wang, Shukun & Cao, Yong & Chen, Zeshao, 2022. "Design and performance evaluation of a novel hybrid solar-gas power and ORC-based hydrogen-production system," Energy, Elsevier, vol. 251(C).
    10. Brian T. White & Michael J. Wagner & Ty Neises & Cory Stansbury & Ben Lindley, 2021. "Modeling of Combined Lead Fast Reactor and Concentrating Solar Power Supercritical Carbon Dioxide Cycles to Demonstrate Feasibility, Efficiency Gains, and Cost Reductions," Sustainability, MDPI, vol. 13(22), pages 1-24, November.
    11. Temiz, Mert & Dincer, Ibrahim, 2024. "Development of a hybridized small modular reactor and solar-based energy system for useful commodities required for sustainable cities," Energy, Elsevier, vol. 286(C).
    12. Temiz, Mert & Dincer, Ibrahim, 2023. "Solar and sodium fast reactor-based integrated energy system developed with thermal energy storage and hydrogen," Energy, Elsevier, vol. 284(C).
    13. Yuechao Chao & Gang Wang, 2023. "Analyzing the Effects of Governmental Policy and Solar Power on Facilitating Carbon Neutralization in the Context of Energy Transition: A Four-Party Evolutionary Game Study," Sustainability, MDPI, vol. 15(6), pages 1-21, March.
    14. Deng, Jiaolong & Guan, Chaoran & Sun, Yujie & Liu, Xiaojing & Zhang, Tengfei & He, Hui & Chai, Xiang, 2024. "Techno-economic analysis and dynamic performance evaluation of an integrated green concept based on concentrating solar power and a transportable heat pipe-cooled nuclear reactor," Energy, Elsevier, vol. 303(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Gang & Dong, Boyi & Chen, Zeshao, 2021. "Design and behaviour estimate of a novel concentrated solar-driven power and desalination system using S–CO2 Brayton cycle and MSF technology," Renewable Energy, Elsevier, vol. 176(C), pages 555-564.
    2. Popov, Dimityr & Borissova, Ana, 2017. "Innovative configuration of a hybrid nuclear-solar tower power plant," Energy, Elsevier, vol. 125(C), pages 736-746.
    3. Wang, Gang & Wang, Fasi & Shen, Fan & Chen, Zeshao & Hu, Peng, 2019. "Novel design and thermodynamic analysis of a solar concentration PV and thermal combined system based on compact linear Fresnel reflector," Energy, Elsevier, vol. 180(C), pages 133-148.
    4. Dong, Zhe & Liu, Miao & Zhang, Zuoyi & Dong, Yujie & Huang, Xiaojin, 2019. "Automatic generation control for the flexible operation of multimodular high temperature gas-cooled reactor plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 11-31.
    5. Zhu, Yizhou & Ma, Benchi & Zeng, Zilong & Lou, Hewei & He, Yi & Jing, Dengwei, 2022. "Solar collector tube as secondary concentrator for significantly enhanced optical performance of LCPV/T system," Renewable Energy, Elsevier, vol. 193(C), pages 418-433.
    6. Ma, Ning & Meng, Fugui & Hong, Wenpeng & Li, Haoran & Niu, Xiaojuan, 2023. "Thermodynamic assessment of the dry-cooling supercritical Brayton cycle in a direct-heated solar power tower plant enabled by CO2-propane mixture," Renewable Energy, Elsevier, vol. 203(C), pages 649-663.
    7. Hussain, C.M. Iftekhar & Norton, Brian & Duffy, Aidan, 2017. "Technological assessment of different solar-biomass systems for hybrid power generation in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1115-1129.
    8. Guo, Jia-Qi & Li, Ming-Jia & Xu, Jin-Liang & Yan, Jun-Jie & Wang, Kun, 2019. "Thermodynamic performance analysis of different supercritical Brayton cycles using CO2-based binary mixtures in the molten salt solar power tower systems," Energy, Elsevier, vol. 173(C), pages 785-798.
    9. Wang, Gang & Zhang, Zhen & Lin, Jianqing, 2024. "Multi-energy complementary power systems based on solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    10. Olumayegun, Olumide & Wang, Meihong & Oko, Eni, 2019. "Thermodynamic performance evaluation of supercritical CO2 closed Brayton cycles for coal-fired power generation with solvent-based CO2 capture," Energy, Elsevier, vol. 166(C), pages 1074-1088.
    11. Duniam, Sam & Veeraragavan, Ananthanarayanan, 2019. "Off-design performance of the supercritical carbon dioxide recompression Brayton cycle with NDDCT cooling for concentrating solar power," Energy, Elsevier, vol. 187(C).
    12. Zhe Dong & Miao Liu & Di Jiang & Xiaojin Huang & Yajun Zhang & Zuoyi Zhang, 2018. "Automatic Generation Control of Nuclear Heating Reactor Power Plants," Energies, MDPI, vol. 11(10), pages 1-18, October.
    13. Epiney, A. & Rabiti, C. & Talbot, P. & Alfonsi, A., 2020. "Economic analysis of a nuclear hybrid energy system in a stochastic environment including wind turbines in an electricity grid," Applied Energy, Elsevier, vol. 260(C).
    14. Gutiérrez, R.E. & Haro, P. & Gómez-Barea, A., 2021. "Techno-economic and operational assessment of concentrated solar power plants with a dual supporting system," Applied Energy, Elsevier, vol. 302(C).
    15. Guobin Cao & Hua Qin & Rajan Ramachandran & Bo Liu, 2019. "Solar Concentrator Consisting of Multiple Aspheric Reflectors," Energies, MDPI, vol. 12(21), pages 1-14, October.
    16. Muhammed Saeed & Khaled Alawadi & Sung Chul Kim, 2020. "Performance of Supercritical CO 2 Power Cycle and Its Turbomachinery with the Printed Circuit Heat Exchanger with Straight and Zigzag Channels," Energies, MDPI, vol. 14(1), pages 1-25, December.
    17. Zhao, Yu & Chang, Zhiyuan & Zhao, Yuanyang & Yang, Qichao & Liu, Guangbin & Li, Liansheng, 2023. "Performance comparison of three supercritical CO2 solar thermal power systems with compressed fluid and molten salt energy storage," Energy, Elsevier, vol. 282(C).
    18. Wang, Di & Han, Xinrui & Li, Haoyu & Li, Xiaoli, 2023. "Dynamic simulation and parameter analysis of solar-coal hybrid power plant based on the supercritical CO2 Brayton cycle," Energy, Elsevier, vol. 272(C).
    19. Wang, Gang & Chao, Yuechao & Chen, Zeshao, 2021. "Promoting developments of hydrogen powered vehicle and solar PV hydrogen production in China: A study based on evolutionary game theory method," Energy, Elsevier, vol. 237(C).
    20. Wang, Gang & Wang, Fasi & Shen, Fan & Jiang, Tieliu & Chen, Zeshao & Hu, Peng, 2020. "Experimental and optical performances of a solar CPV device using a linear Fresnel reflector concentrator," Renewable Energy, Elsevier, vol. 146(C), pages 2351-2361.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:197:y:2020:i:c:s0360544220303893. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.