IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v284y2023ics0360544223026695.html
   My bibliography  Save this article

Solar and sodium fast reactor-based integrated energy system developed with thermal energy storage and hydrogen

Author

Listed:
  • Temiz, Mert
  • Dincer, Ibrahim

Abstract

Hybridizing nuclear and renewable energy systems helps enhance the benefits of both sources and eliminate their disadvantages. In order to provide resilience, energy systems need to be designed in a complementary manner to achieve an uninterrupted energy supply. The current study proposes a hybridization of a sodium fast reactor with a concentrated solar plant and molten salt energy storage system. By considering the community requirements, additional subsystems are added that use process heat and power to generate more useful commodities. The proposed nuclear and renewable hybrid energy system generates heat, power, hydrogen, fresh water, and cooling effect for communities in order to meet their needs in a sustainable fashion. The proposed system is a potential alternative to currently available fossil fuel-driven systems. Intermittency and flexibility issues of such systems are overcome with hybridization and integration. Apart from the other commodities, hydrogen is produced and supplied to the community by considering hydrogenization along with the electrification of transportation. Specifically, a parabolic trough collector-type concentrated solar plant, a sodium-cooled fast reactor, a molten salt energy storage unit, a lithium bromide absorption refrigerator, a solid-oxide electrolyser, a multi-effect distillation-type desalination unit, and a district heating system are considered to be used in the integrated system. The proposed system is investigated by considering the first and second laws of thermodynamics, which assess energy and exergy inputs and outputs of the system and subsystems. In order to analyze the system with realistic conditions, actual data for California, the United States, is considered. For a community with 240243 residents, a sodium fast reactor with 1.5 GWth capacity and parabolic trough collectors with 0.5 GWth capacity are considered, along with a 4 GWh of molten salt energy storage system. Annual average energy and exergy efficiencies are found to be 63.54 % and 57.96 %. The maximum energy efficiency is calculated as 84.4 %, and the maximum exergy efficiency is found as 81.28 %. Apart from the current community needs, 53,285.15 tonnes of hydrogen is produced annually.

Suggested Citation

  • Temiz, Mert & Dincer, Ibrahim, 2023. "Solar and sodium fast reactor-based integrated energy system developed with thermal energy storage and hydrogen," Energy, Elsevier, vol. 284(C).
  • Handle: RePEc:eee:energy:v:284:y:2023:i:c:s0360544223026695
    DOI: 10.1016/j.energy.2023.129275
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223026695
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129275?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pilotti, L. & Colombari, M. & Castelli, A.F. & Binotti, M. & Giaconia, A. & Martelli, E., 2023. "Simultaneous design and operational optimization of hybrid CSP-PV plants," Applied Energy, Elsevier, vol. 331(C).
    2. Dong, Zhe & Li, Bowen & Li, Junyi & Guo, Zhiwu & Huang, Xiaojin & Zhang, Yajun & Zhang, Zuoyi, 2021. "Flexible control of nuclear cogeneration plants for balancing intermittent renewables," Energy, Elsevier, vol. 221(C).
    3. Wang, Gang & Wang, Cheng & Chen, Zeshao & Hu, Peng, 2020. "Design and performance evaluation of an innovative solar-nuclear complementarity power system using the S–CO2 Brayton cycle," Energy, Elsevier, vol. 197(C).
    4. Yang, Jingze & Yang, Zhen & Duan, Yuanyuan, 2021. "Load matching and techno-economic analysis of CSP plant with S–CO2 Brayton cycle in CSP-PV-wind hybrid system," Energy, Elsevier, vol. 223(C).
    5. Rovense, F. & Reyes-Belmonte, M.A. & González-Aguilar, J. & Amelio, M. & Bova, S. & Romero, M., 2019. "Flexible electricity dispatch for CSP plant using un-fired closed air Brayton cycle with particles based thermal energy storage system," Energy, Elsevier, vol. 173(C), pages 971-984.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Hongtao & Zhai, Rongrong & Patchigolla, Kumar & Turner, Peter & Yu, Xiaohan & Wang, Peng, 2023. "Multi-objective optimisation of a thermal-storage PV-CSP-wind hybrid power system in three operation modes," Energy, Elsevier, vol. 284(C).
    2. Temiz, Mert & Dincer, Ibrahim, 2024. "Development of a hybridized small modular reactor and solar-based energy system for useful commodities required for sustainable cities," Energy, Elsevier, vol. 286(C).
    3. Brian T. White & Michael J. Wagner & Ty Neises & Cory Stansbury & Ben Lindley, 2021. "Modeling of Combined Lead Fast Reactor and Concentrating Solar Power Supercritical Carbon Dioxide Cycles to Demonstrate Feasibility, Efficiency Gains, and Cost Reductions," Sustainability, MDPI, vol. 13(22), pages 1-24, November.
    4. Zhao, Yincheng & Zhang, Guozhou & Hu, Weihao & Huang, Qi & Chen, Zhe & Blaabjerg, Frede, 2023. "Meta-learning based voltage control strategy for emergency faults of active distribution networks," Applied Energy, Elsevier, vol. 349(C).
    5. Alhadhrami, Saeed & Soto, Gabriel J & Lindley, Ben, 2023. "Dispatch analysis of flexible power operation with multi-unit small modular reactors," Energy, Elsevier, vol. 280(C).
    6. Manzoni, Matteo & Patti, Alberto & Maccarini, Simone & Traverso, Alberto, 2022. "Analysis and comparison of innovative large scale thermo-mechanical closed cycle energy storages," Energy, Elsevier, vol. 249(C).
    7. Zhe Dong & Zhonghua Cheng & Yunlong Zhu & Xiaojin Huang & Yujie Dong & Zuoyi Zhang, 2023. "Review on the Recent Progress in Nuclear Plant Dynamical Modeling and Control," Energies, MDPI, vol. 16(3), pages 1-19, February.
    8. Nilton Bispo Amado & Erick Del Bianco Pelegia & Ildo Luís Sauer, 2021. "Capacity Value from Wind and Solar Sources in Systems with Variable Dispatchable Capacity—An Application in the Brazilian Hydrothermal System," Energies, MDPI, vol. 14(11), pages 1-26, May.
    9. Marta Muñoz & Antonio Rovira & María José Montes, 2022. "Thermodynamic cycles for solar thermal power plants: A review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(2), March.
    10. Yilin Xu & Zeping Hu, 2024. "Source-Grid-Load Cross-Area Coordinated Optimization Model Based on IGDT and Wind-Photovoltaic-Photothermal System," Sustainability, MDPI, vol. 16(5), pages 1-15, March.
    11. Sulzgruber, Verena & Wünsch, David & Haider, Markus & Walter, Heimo, 2020. "Numerical investigation on the flow behavior of a novel fluidization based particle thermal energy storage (FP-TES)," Energy, Elsevier, vol. 200(C).
    12. David Borge-Diez & Enrique Rosales-Asensio & Ana I. Palmero-Marrero & Emin Acikkalp, 2022. "Optimization of CSP Plants with Thermal Energy Storage for Electricity Price Stability in Spot Markets," Energies, MDPI, vol. 15(5), pages 1-25, February.
    13. Du, Yadong & Hu, Chenxing & Yang, Ce & Wang, Haimei & Dong, Wuqiang, 2022. "Size optimization of heat exchanger and thermoeconomic assessment for supercritical CO2 recompression Brayton cycle applied in marine," Energy, Elsevier, vol. 239(PD).
    14. Wang, Di & Han, Xinrui & Li, Haoyu & Li, Xiaoli, 2023. "Dynamic simulation and parameter analysis of solar-coal hybrid power plant based on the supercritical CO2 Brayton cycle," Energy, Elsevier, vol. 272(C).
    15. Xiangjun Yu & Wenlei Lian & Ke Gao & Zhixing Jiang & Cheng Tian & Nan Sun & Hangbin Zheng & Xinrui Wang & Chao Song & Xianglei Liu, 2022. "Solar Thermochemical CO 2 Splitting Integrated with Supercritical CO 2 Cycle for Efficient Fuel and Power Generation," Energies, MDPI, vol. 15(19), pages 1-20, October.
    16. Yang, Jingze & Yang, Zhen & Duan, Yuanyuan, 2022. "A review on integrated design and off-design operation of solar power tower system with S–CO2 Brayton cycle," Energy, Elsevier, vol. 246(C).
    17. David Wünsch & Verena Sulzgruber & Markus Haider & Heimo Walter, 2020. "FP-TES: A Fluidisation-Based Particle Thermal Energy Storage, Part I: Numerical Investigations and Bulk Heat Conductivity," Energies, MDPI, vol. 13(17), pages 1-20, August.
    18. Paloma Martínez-Merino & Rodrigo Alcántara & Teresa Aguilar & Juan Jesús Gallardo & Iván Carrillo-Berdugo & Roberto Gómez-Villarejo & Mabel Rodríguez-Fernández & Javier Navas, 2019. "Stability and Thermal Properties Study of Metal Chalcogenide-Based Nanofluids for Concentrating Solar Power," Energies, MDPI, vol. 12(24), pages 1-11, December.
    19. Dang, Chaolei & Cheng, Kunlin & Fan, Junhao & Wang, Yilin & Qin, Jiang & Liu, Guodong, 2023. "Performance analysis of fuel vapor turbine and closed-Brayton-cycle combined power generation system for hypersonic vehicles," Energy, Elsevier, vol. 266(C).
    20. José M. Cardemil & Allan R. Starke & Adriana Zurita & Carlos Mata‐Torres & Rodrigo Escobar, 2021. "Integration schemes for hybrid and polygeneration concentrated solar power plants," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(6), November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:284:y:2023:i:c:s0360544223026695. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.