IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v239y2022ipes0360544221027109.html
   My bibliography  Save this article

An adaptive hybrid backtracking search optimization algorithm for dynamic economic dispatch with valve-point effects

Author

Listed:
  • Dai, Canyun
  • Hu, Zhongbo
  • Su, Qinghua

Abstract

Dynamic economic dispatch with valve-point effects (DED_vpe) is a high-dimensional constrained optimization problem with non-convex and non-smooth characteristics. Hybrid methods are one of the most advanced methods to solve the problem. However, most of these methods improve the solution accuracy at the expense of algorithm robustness. This paper proposes an adaptive hybrid backtracking search optimization algorithm (AHBSA) for solving the DED_vpe. The core idea of AHBSA lies in designing a suitable coupling structure based on the current best individual (called optimal partial coupling). The structure hybridizes an improved BSA mutation operator and the DE/best/1 operator with equal probability. The improved BSA mutation operator uses the current best individual and the historical population to update individual position, called BSA/best/old. It is also the first research work of extending BSA to the problem. In addition, an adaptive parameter control mechanism is proposed to select an appropriate ‘mixrate’ value for achieving better coupling. The performance of AHBSA is validated on six DED test cases of three systems. Experimental results demonstrate that, compared with some representative methods, AHBSA not only reduces the fuel cost but also ensures the robustness of the algorithm.

Suggested Citation

  • Dai, Canyun & Hu, Zhongbo & Su, Qinghua, 2022. "An adaptive hybrid backtracking search optimization algorithm for dynamic economic dispatch with valve-point effects," Energy, Elsevier, vol. 239(PE).
  • Handle: RePEc:eee:energy:v:239:y:2022:i:pe:s0360544221027109
    DOI: 10.1016/j.energy.2021.122461
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221027109
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122461?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohammadi-ivatloo, Behnam & Rabiee, Abbas & Soroudi, Alireza & Ehsan, Mehdi, 2012. "Imperialist competitive algorithm for solving non-convex dynamic economic power dispatch," Energy, Elsevier, vol. 44(1), pages 228-240.
    2. Zou, Dexuan & Li, Steven & Kong, Xiangyong & Ouyang, Haibin & Li, Zongyan, 2018. "Solving the dynamic economic dispatch by a memory-based global differential evolution and a repair technique of constraint handling," Energy, Elsevier, vol. 147(C), pages 59-80.
    3. Niu, Qun & Zhang, Hongyun & Li, Kang & Irwin, George W., 2014. "An efficient harmony search with new pitch adjustment for dynamic economic dispatch," Energy, Elsevier, vol. 65(C), pages 25-43.
    4. Sivasubramani, S. & Swarup, K.S., 2010. "Hybrid SOA–SQP algorithm for dynamic economic dispatch with valve-point effects," Energy, Elsevier, vol. 35(12), pages 5031-5036.
    5. Meng, Anbo & Hu, Hanwu & Yin, Hao & Peng, Xiangang & Guo, Zhuangzhi, 2015. "Crisscross optimization algorithm for large-scale dynamic economic dispatch problem with valve-point effects," Energy, Elsevier, vol. 93(P2), pages 2175-2190.
    6. Fraga, Eric S. & Yang, Lingjian & Papageorgiou, Lazaros G., 2012. "On the modelling of valve point loadings for power electricity dispatch," Applied Energy, Elsevier, vol. 91(1), pages 301-303.
    7. Modiri-Delshad, Mostafa & Rahim, Nasrudin Abd, 2014. "Solving non-convex economic dispatch problem via backtracking search algorithm," Energy, Elsevier, vol. 77(C), pages 372-381.
    8. Xiong, Guojiang & Shi, Dongyuan, 2018. "Hybrid biogeography-based optimization with brain storm optimization for non-convex dynamic economic dispatch with valve-point effects," Energy, Elsevier, vol. 157(C), pages 424-435.
    9. Modiri-Delshad, Mostafa & Aghay Kaboli, S. Hr. & Taslimi-Renani, Ehsan & Rahim, Nasrudin Abd, 2016. "Backtracking search algorithm for solving economic dispatch problems with valve-point effects and multiple fuel options," Energy, Elsevier, vol. 116(P1), pages 637-649.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meng, Anbo & Xu, Xuancong & Zhang, Zhan & Zeng, Cong & Liang, Ruduo & Zhang, Zheng & Wang, Xiaolin & Yan, Baiping & Yin, Hao & Luo, Jianqiang, 2022. "Solving high-dimensional multi-area economic dispatch problem by decoupled distributed crisscross optimization algorithm with population cross generation strategy," Energy, Elsevier, vol. 258(C).
    2. Xu, Shengping & Xiong, Guojiang & Mohamed, Ali Wagdy & Bouchekara, Houssem R.E.H., 2022. "Forgetting velocity based improved comprehensive learning particle swarm optimization for non-convex economic dispatch problems with valve-point effects and multi-fuel options," Energy, Elsevier, vol. 256(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Zhongbo & Dai, Canyun & Su, Qinghua, 2022. "Adaptive backtracking search optimization algorithm with a dual-learning strategy for dynamic economic dispatch with valve-point effects," Energy, Elsevier, vol. 248(C).
    2. Guojiang Xiong & Jing Zhang & Xufeng Yuan & Dongyuan Shi & Yu He & Yao Yao & Gonggui Chen, 2018. "A Novel Method for Economic Dispatch with Across Neighborhood Search: A Case Study in a Provincial Power Grid, China," Complexity, Hindawi, vol. 2018, pages 1-18, November.
    3. Xiong, Guojiang & Shi, Dongyuan, 2018. "Hybrid biogeography-based optimization with brain storm optimization for non-convex dynamic economic dispatch with valve-point effects," Energy, Elsevier, vol. 157(C), pages 424-435.
    4. Zou, Dexuan & Li, Steven & Kong, Xiangyong & Ouyang, Haibin & Li, Zongyan, 2018. "Solving the dynamic economic dispatch by a memory-based global differential evolution and a repair technique of constraint handling," Energy, Elsevier, vol. 147(C), pages 59-80.
    5. El-Sayed, Wael T. & El-Saadany, Ehab F. & Zeineldin, Hatem H. & Al-Sumaiti, Ameena S., 2020. "Fast initialization methods for the nonconvex economic dispatch problem," Energy, Elsevier, vol. 201(C).
    6. Al-Bahrani, Loau Tawfak & Chandra Patra, Jagdish, 2018. "Multi-gradient PSO algorithm for optimization of multimodal, discontinuous and non-convex fuel cost function of thermal generating units under various power constraints in smart power grid," Energy, Elsevier, vol. 147(C), pages 1070-1091.
    7. Arul, R. & Velusami, S. & Ravi, G., 2015. "A new algorithm for combined dynamic economic emission dispatch with security constraints," Energy, Elsevier, vol. 79(C), pages 496-511.
    8. Secui, Dinu Calin, 2016. "A modified Symbiotic Organisms Search algorithm for large scale economic dispatch problem with valve-point effects," Energy, Elsevier, vol. 113(C), pages 366-384.
    9. Nwulu, Nnamdi I. & Xia, Xiaohua, 2015. "Implementing a model predictive control strategy on the dynamic economic emission dispatch problem with game theory based demand response programs," Energy, Elsevier, vol. 91(C), pages 404-419.
    10. Loau Al-Bahrani & Mehdi Seyedmahmoudian & Ben Horan & Alex Stojcevski, 2021. "Solving the Real Power Limitations in the Dynamic Economic Dispatch of Large-Scale Thermal Power Units under the Effects of Valve-Point Loading and Ramp-Rate Limitations," Sustainability, MDPI, vol. 13(3), pages 1-26, January.
    11. Dehnavi, Ehsan & Abdi, Hamdi, 2016. "Optimal pricing in time of use demand response by integrating with dynamic economic dispatch problem," Energy, Elsevier, vol. 109(C), pages 1086-1094.
    12. Fitiwi, Desta Z. & Olmos, L. & Rivier, M. & de Cuadra, F. & Pérez-Arriaga, I.J., 2016. "Finding a representative network losses model for large-scale transmission expansion planning with renewable energy sources," Energy, Elsevier, vol. 101(C), pages 343-358.
    13. Ghasemi, Mojtaba & Ghavidel, Sahand & Ghanbarian, Mohammad Mehdi & Gharibzadeh, Masihallah & Azizi Vahed, Ali, 2014. "Multi-objective optimal power flow considering the cost, emission, voltage deviation and power losses using multi-objective modified imperialist competitive algorithm," Energy, Elsevier, vol. 78(C), pages 276-289.
    14. Basu, M., 2021. "Fuel constrained dynamic economic dispatch with demand side management," Energy, Elsevier, vol. 223(C).
    15. Zheng, J.H. & Chen, J.J. & Wu, Q.H. & Jing, Z.X., 2015. "Reliability constrained unit commitment with combined hydro and thermal generation embedded using self-learning group search optimizer," Energy, Elsevier, vol. 81(C), pages 245-254.
    16. Al-Bahrani, Loau Tawfak & Horan, Ben & Seyedmahmoudian, Mehdi & Stojcevski, Alex, 2020. "Dynamic economic emission dispatch with load dema nd management for the load demand of electric vehicles during crest shaving and valley filling in smart cities environment," Energy, Elsevier, vol. 195(C).
    17. Shilaja, C. & Ravi, K., 2017. "Optimization of emission/economic dispatch using euclidean affine flower pollination algorithm (eFPA) and binary FPA (BFPA) in solar photo voltaic generation," Renewable Energy, Elsevier, vol. 107(C), pages 550-566.
    18. Zaman, Forhad & Elsayed, Saber M. & Ray, Tapabrata & Sarker, Ruhul A., 2016. "Evolutionary algorithms for power generation planning with uncertain renewable energy," Energy, Elsevier, vol. 112(C), pages 408-419.
    19. Meng, Anbo & Hu, Hanwu & Yin, Hao & Peng, Xiangang & Guo, Zhuangzhi, 2015. "Crisscross optimization algorithm for large-scale dynamic economic dispatch problem with valve-point effects," Energy, Elsevier, vol. 93(P2), pages 2175-2190.
    20. de Athayde Costa e Silva, Marsil & Klein, Carlos Eduardo & Mariani, Viviana Cocco & dos Santos Coelho, Leandro, 2013. "Multiobjective scatter search approach with new combination scheme applied to solve environmental/economic dispatch problem," Energy, Elsevier, vol. 53(C), pages 14-21.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pe:s0360544221027109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.