IDEAS home Printed from https://ideas.repec.org/a/hin/complx/2591341.html
   My bibliography  Save this article

A Novel Method for Economic Dispatch with Across Neighborhood Search: A Case Study in a Provincial Power Grid, China

Author

Listed:
  • Guojiang Xiong
  • Jing Zhang
  • Xufeng Yuan
  • Dongyuan Shi
  • Yu He
  • Yao Yao
  • Gonggui Chen

Abstract

Economic dispatch (ED) is of cardinal significance for the power system operation. It is mathematically a typical complex nonlinear multivariable strongly coupled optimization problem with equality and inequality constraints, especially considering the valve-point effects. In order to effectively solve the problem, a simple yet very young and efficient population-based algorithm named across neighborhood search (ANS) is implemented in this paper. In ANS, a group of individuals collaboratively navigate through the search space for obtaining the optimal solution by simultaneously searching the neighborhoods of multiple superior solutions. Four benchmark test cases with diverse complexities and characteristics are firstly employed to comprehensively verify the feasibility and effectiveness of ANS. The experimental and comparison results fully demonstrate the superiority of ANS in terms of the final solution quality, convergence speed, robustness, and statistics. In addition, the sensitivities of ANS to variations of population size and across-search degree are studied. Furthermore, ANS is applied to a practical provincial power grid of China. All the comparison results consistently indicate that ANS is highly competitive and can be used as a promising alternative for ED problems.

Suggested Citation

  • Guojiang Xiong & Jing Zhang & Xufeng Yuan & Dongyuan Shi & Yu He & Yao Yao & Gonggui Chen, 2018. "A Novel Method for Economic Dispatch with Across Neighborhood Search: A Case Study in a Provincial Power Grid, China," Complexity, Hindawi, vol. 2018, pages 1-18, November.
  • Handle: RePEc:hin:complx:2591341
    DOI: 10.1155/2018/2591341
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2018/2591341.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2018/2591341.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2018/2591341?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Meng, Anbo & Li, Jinbei & Yin, Hao, 2016. "An efficient crisscross optimization solution to large-scale non-convex economic load dispatch with multiple fuel types and valve-point effects," Energy, Elsevier, vol. 113(C), pages 1147-1161.
    2. Xiong, Guojiang & Shi, Dongyuan & Duan, Xianzhong, 2013. "Multi-strategy ensemble biogeography-based optimization for economic dispatch problems," Applied Energy, Elsevier, vol. 111(C), pages 801-811.
    3. Adarsh, B.R. & Raghunathan, T. & Jayabarathi, T. & Yang, Xin-She, 2016. "Economic dispatch using chaotic bat algorithm," Energy, Elsevier, vol. 96(C), pages 666-675.
    4. Secui, Dinu Calin, 2016. "A modified Symbiotic Organisms Search algorithm for large scale economic dispatch problem with valve-point effects," Energy, Elsevier, vol. 113(C), pages 366-384.
    5. Truong H. Khoa & Pandian M. Vasant & Balbir Singh Mahinder Singh & V. N. Dieu, 2017. "Hybrid Mean-Variance Mapping Optimization for Non-Convex Economic Dispatch Problems," International Journal of Swarm Intelligence Research (IJSIR), IGI Global, vol. 8(4), pages 34-59, October.
    6. Meng, Anbo & Hu, Hanwu & Yin, Hao & Peng, Xiangang & Guo, Zhuangzhi, 2015. "Crisscross optimization algorithm for large-scale dynamic economic dispatch problem with valve-point effects," Energy, Elsevier, vol. 93(P2), pages 2175-2190.
    7. Cai, Jiejin & Li, Qiong & Li, Lixiang & Peng, Haipeng & Yang, Yixian, 2012. "A hybrid FCASO-SQP method for solving the economic dispatch problems with valve-point effects," Energy, Elsevier, vol. 38(1), pages 346-353.
    8. Niknam, Taher & Mojarrad, Hassan Doagou & Nayeripour, Majid, 2010. "A new fuzzy adaptive particle swarm optimization for non-smooth economic dispatch," Energy, Elsevier, vol. 35(4), pages 1764-1778.
    9. Fesanghary, M. & Ardehali, M.M., 2009. "A novel meta-heuristic optimization methodology for solving various types of economic dispatch problem," Energy, Elsevier, vol. 34(6), pages 757-766.
    10. Niknam, Taher, 2010. "A new fuzzy adaptive hybrid particle swarm optimization algorithm for non-linear, non-smooth and non-convex economic dispatch problem," Applied Energy, Elsevier, vol. 87(1), pages 327-339, January.
    11. Fraga, Eric S. & Yang, Lingjian & Papageorgiou, Lazaros G., 2012. "On the modelling of valve point loadings for power electricity dispatch," Applied Energy, Elsevier, vol. 91(1), pages 301-303.
    12. Jayabarathi, T. & Raghunathan, T. & Adarsh, B.R. & Suganthan, Ponnuthurai Nagaratnam, 2016. "Economic dispatch using hybrid grey wolf optimizer," Energy, Elsevier, vol. 111(C), pages 630-641.
    13. Modiri-Delshad, Mostafa & Rahim, Nasrudin Abd, 2014. "Solving non-convex economic dispatch problem via backtracking search algorithm," Energy, Elsevier, vol. 77(C), pages 372-381.
    14. Xiong, Guojiang & Shi, Dongyuan, 2018. "Hybrid biogeography-based optimization with brain storm optimization for non-convex dynamic economic dispatch with valve-point effects," Energy, Elsevier, vol. 157(C), pages 424-435.
    15. Mellal, Mohamed Arezki & Williams, Edward J., 2015. "Cuckoo optimization algorithm with penalty function for combined heat and power economic dispatch problem," Energy, Elsevier, vol. 93(P2), pages 1711-1718.
    16. Alsumait, J.S. & Sykulski, J.K. & Al-Othman, A.K., 2010. "A hybrid GA-PS-SQP method to solve power system valve-point economic dispatch problems," Applied Energy, Elsevier, vol. 87(5), pages 1773-1781, May.
    17. Modiri-Delshad, Mostafa & Aghay Kaboli, S. Hr. & Taslimi-Renani, Ehsan & Rahim, Nasrudin Abd, 2016. "Backtracking search algorithm for solving economic dispatch problems with valve-point effects and multiple fuel options," Energy, Elsevier, vol. 116(P1), pages 637-649.
    18. Basu, M., 2014. "Teaching–learning-based optimization algorithm for multi-area economic dispatch," Energy, Elsevier, vol. 68(C), pages 21-28.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ismail Marouani & Tawfik Guesmi & Hsan Hadj Abdallah & Badr M. Alshammari & Khalid Alqunun & Ahmed S. Alshammari & Salem Rahmani, 2022. "Combined Economic Emission Dispatch with and without Consideration of PV and Wind Energy by Using Various Optimization Techniques: A Review," Energies, MDPI, vol. 15(12), pages 1-35, June.
    2. Guojiang Xiong & Jing Zhang & Dongyuan Shi & Xufeng Yuan, 2019. "Application of Supply-Demand-Based Optimization for Parameter Extraction of Solar Photovoltaic Models," Complexity, Hindawi, vol. 2019, pages 1-22, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Secui, Dinu Calin, 2016. "A modified Symbiotic Organisms Search algorithm for large scale economic dispatch problem with valve-point effects," Energy, Elsevier, vol. 113(C), pages 366-384.
    2. Modiri-Delshad, Mostafa & Aghay Kaboli, S. Hr. & Taslimi-Renani, Ehsan & Rahim, Nasrudin Abd, 2016. "Backtracking search algorithm for solving economic dispatch problems with valve-point effects and multiple fuel options," Energy, Elsevier, vol. 116(P1), pages 637-649.
    3. Xu, Shengping & Xiong, Guojiang & Mohamed, Ali Wagdy & Bouchekara, Houssem R.E.H., 2022. "Forgetting velocity based improved comprehensive learning particle swarm optimization for non-convex economic dispatch problems with valve-point effects and multi-fuel options," Energy, Elsevier, vol. 256(C).
    4. Kheshti, Mostafa & Kang, Xiaoning & Bie, Zhaohong & Jiao, Zaibin & Wang, Xiuli, 2017. "An effective Lightning Flash Algorithm solution to large scale non-convex economic dispatch with valve-point and multiple fuel options on generation units," Energy, Elsevier, vol. 129(C), pages 1-15.
    5. Zou, Dexuan & Li, Steven & Wang, Gai-Ge & Li, Zongyan & Ouyang, Haibin, 2016. "An improved differential evolution algorithm for the economic load dispatch problems with or without valve-point effects," Applied Energy, Elsevier, vol. 181(C), pages 375-390.
    6. Jianzhong Xu & Fu Yan & Kumchol Yun & Lifei Su & Fengshu Li & Jun Guan, 2019. "Noninferior Solution Grey Wolf Optimizer with an Independent Local Search Mechanism for Solving Economic Load Dispatch Problems," Energies, MDPI, vol. 12(12), pages 1-26, June.
    7. Xiong, Guojiang & Shi, Dongyuan & Duan, Xianzhong, 2013. "Multi-strategy ensemble biogeography-based optimization for economic dispatch problems," Applied Energy, Elsevier, vol. 111(C), pages 801-811.
    8. Yang, Wenqiang & Zhu, Xinxin & Xiao, Qinge & Yang, Zhile, 2023. "Enhanced multi-objective marine predator algorithm for dynamic economic-grid fluctuation dispatch with plug-in electric vehicles," Energy, Elsevier, vol. 282(C).
    9. Dai, Canyun & Hu, Zhongbo & Su, Qinghua, 2022. "An adaptive hybrid backtracking search optimization algorithm for dynamic economic dispatch with valve-point effects," Energy, Elsevier, vol. 239(PE).
    10. El-Sayed, Wael T. & El-Saadany, Ehab F. & Zeineldin, Hatem H. & Al-Sumaiti, Ameena S., 2020. "Fast initialization methods for the nonconvex economic dispatch problem," Energy, Elsevier, vol. 201(C).
    11. Meng, Anbo & Li, Jinbei & Yin, Hao, 2016. "An efficient crisscross optimization solution to large-scale non-convex economic load dispatch with multiple fuel types and valve-point effects," Energy, Elsevier, vol. 113(C), pages 1147-1161.
    12. Zhang, Xian & Wang, Huaizhi & Peng, Jian-chun & Liu, Yitao & Wang, Guibin & Jiang, Hui, 2018. "GPNBI inspired MOSDE for electric power dispatch considering wind energy penetration," Energy, Elsevier, vol. 144(C), pages 404-419.
    13. Hu, Zhongbo & Dai, Canyun & Su, Qinghua, 2022. "Adaptive backtracking search optimization algorithm with a dual-learning strategy for dynamic economic dispatch with valve-point effects," Energy, Elsevier, vol. 248(C).
    14. Singh, Diljinder & Dhillon, J.S., 2019. "Ameliorated grey wolf optimization for economic load dispatch problem," Energy, Elsevier, vol. 169(C), pages 398-419.
    15. Glotić, Arnel & Zamuda, Aleš, 2015. "Short-term combined economic and emission hydrothermal optimization by surrogate differential evolution," Applied Energy, Elsevier, vol. 141(C), pages 42-56.
    16. Biswas, Partha P. & Suganthan, P.N. & Qu, B.Y. & Amaratunga, Gehan A.J., 2018. "Multiobjective economic-environmental power dispatch with stochastic wind-solar-small hydro power," Energy, Elsevier, vol. 150(C), pages 1039-1057.
    17. Al-Bahrani, Loau Tawfak & Chandra Patra, Jagdish, 2018. "Multi-gradient PSO algorithm for optimization of multimodal, discontinuous and non-convex fuel cost function of thermal generating units under various power constraints in smart power grid," Energy, Elsevier, vol. 147(C), pages 1070-1091.
    18. Yaşar, Celal & Özyön, Serdar, 2011. "A new hybrid approach for nonconvex economic dispatch problem with valve-point effect," Energy, Elsevier, vol. 36(10), pages 5838-5845.
    19. Modiri-Delshad, Mostafa & Rahim, Nasrudin Abd, 2014. "Solving non-convex economic dispatch problem via backtracking search algorithm," Energy, Elsevier, vol. 77(C), pages 372-381.
    20. Secui, Dinu Calin, 2015. "The chaotic global best artificial bee colony algorithm for the multi-area economic/emission dispatch," Energy, Elsevier, vol. 93(P2), pages 2518-2545.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:2591341. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.