IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v194y2020ics0360544220300219.html
   My bibliography  Save this article

A comparative life cycle analysis of wheat straw utilization modes in China

Author

Listed:
  • Cheng, Guishi
  • Zhao, Ying
  • Pan, Shijiu
  • Wang, Xiaoqiang
  • Dong, Changqing

Abstract

There are abundant wheat straw resources in China. Proper treatment of wheat straw can reduce environmental pollution and environmental load while bring certain economic benefits. How to choose the right way to deal with straw is a difficult problem at present. Life cycle analysis of three wheat straw utilization modes: (1)direct combustion for electricity (2)fuel ethanol production and (3)feed production have been conducted to compare their environmental performances. Life cycle analysis results show that fuel ethanol production from wheat straw is an environment-friendly utilization mode because of its great advantages (−412mPt) in human health, ecological environment quality, climate change and natural resources. Direct combustion for electricity has certain advantages in terms of natural resources and treatment efficiency, but has greater impact (308mPt) on climate change and more emissions compared with fuel ethanol production and feed production. Feed production has great economic advantages and moderate environmental load (358mPt). It has the potential for large-scale application. The determination of the specific utilization mode should take into account the actual needs local conditions and other factors.

Suggested Citation

  • Cheng, Guishi & Zhao, Ying & Pan, Shijiu & Wang, Xiaoqiang & Dong, Changqing, 2020. "A comparative life cycle analysis of wheat straw utilization modes in China," Energy, Elsevier, vol. 194(C).
  • Handle: RePEc:eee:energy:v:194:y:2020:i:c:s0360544220300219
    DOI: 10.1016/j.energy.2020.116914
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220300219
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.116914?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ramírez-Arpide, Félix Rafael & Espinosa-Solares, Teodoro & Gallegos-Vázquez, Clemente & Santoyo-Cortés, Vinicio Horacio, 2019. "Bioenergy production from nopal cladodes and dairy cow manure on a farm-scale level: Challenges for its economic feasibility in Mexico," Renewable Energy, Elsevier, vol. 142(C), pages 383-392.
    2. Yong, Zihan & Dong, Yulin & Zhang, Xu & Tan, Tianwei, 2015. "Anaerobic co-digestion of food waste and straw for biogas production," Renewable Energy, Elsevier, vol. 78(C), pages 527-530.
    3. Shafie, S.M. & Masjuki, H.H. & Mahlia, T.M.I., 2014. "Rice straw supply chain for electricity generation in Malaysia: Economical and environmental assessment," Applied Energy, Elsevier, vol. 135(C), pages 299-308.
    4. Silalertruksa, Thapat & Gheewala, Shabbir H. & Sagisaka, Masayuki & Yamaguchi, Katsunobu, 2013. "Life cycle GHG analysis of rice straw bio-DME production and application in Thailand," Applied Energy, Elsevier, vol. 112(C), pages 560-567.
    5. Feng, Lu & Perschke, Yolanda Maria Lemes & Fontaine, Doline & Ward, Alastair James & Eriksen, Jørgen & Sørensen, Peter & Møller, Henrik Bjarne, 2019. "Co-ensiling of cover crops and barley straw for biogas production," Renewable Energy, Elsevier, vol. 142(C), pages 677-683.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jun Zhang & Yanmin Li & Lin Mei & Xiaoliang Yu & Xun Lv & Jinping Wang & Jin Yan & Rongyue Sun, 2023. "Study on the Effect of Secondary Air Layout on CO Reduction Performance in a 75 t/h Biomass CFB Boiler Burning Wheat Straw," Energies, MDPI, vol. 16(8), pages 1-15, April.
    2. Li, Junjie & Zhang, Yueling & Yang, Yanli & Zhang, Xiaomei & Wang, Nana & Zheng, Yonghong & Tian, Yajun & Xie, Kechang, 2022. "Life cycle assessment and techno-economic analysis of ethanol production via coal and its competitors: A comparative study," Applied Energy, Elsevier, vol. 312(C).
    3. Ricardo Rebolledo-Leiva & Sofía Estévez & Diógenes Hernández & Gumersindo Feijoo & María Teresa Moreira & Sara González-García, 2024. "Apple Pomace Integrated Biorefinery for Biofuels Production: A Techno-Economic and Environmental Sustainability Analysis," Resources, MDPI, vol. 13(11), pages 1-18, November.
    4. Wu, Juanjuan & Zhang, Jian & Yi, Weiming & Cai, Hongzhen & Su, Zhanpeng & Li, Yang, 2021. "Economic analysis of different straw supply modes in China," Energy, Elsevier, vol. 237(C).
    5. Edwin Espinel Blanco & Guillermo Valencia Ochoa & Jorge Duarte Forero, 2020. "Combining Energy Management Indicators and Life Cycle Assessment Indicators to Promote Sustainability in a Paper Production Plant," Resources, MDPI, vol. 9(6), pages 1-21, June.
    6. Li, Cong & Xu, Zixuan & Wang, Yuqing & Xu, Wenbo & Yang, Rui & Zhang, Hui, 2023. "Investigation of heat and mass transfer characteristics during the flame propagation of biomass straw from an initial linear fire source," Energy, Elsevier, vol. 265(C).
    7. Tamás Mizik, 2021. "Economic Aspects and Sustainability of Ethanol Production—A Systematic Literature Review," Energies, MDPI, vol. 14(19), pages 1-25, September.
    8. Wu, Juanjuan & Zhang, Jian & Yi, Weiming & Cai, Hongzhen & Li, Yang & Su, Zhanpeng, 2022. "Agri-biomass supply chain optimization in north China: Model development and application," Energy, Elsevier, vol. 239(PD).
    9. Mizik, Tamás, 2022. "A bioetanol-termelés gazdasági és fenntarthatósági vetületei [Economic and sustainability aspects of bioethanol production]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(10), pages 1213-1241.
    10. Khanali, Majid & Ghasemi-Mobtaker, Hassan & Varmazyar, Hossein & Mohammadkashi, Naghmeh & Chau, Kwok-wing & Nabavi-Pelesaraei, Ashkan, 2022. "Applying novel eco-exergoenvironmental toxicity index to select the best irrigation system of sunflower production," Energy, Elsevier, vol. 250(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdeshahian, Peyman & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2016. "Potential of biogas production from farm animal waste in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 714-723.
    2. Aisha Al-Rumaihi & Gordon McKay & Hamish R. Mackey & Tareq Al-Ansari, 2020. "Environmental Impact Assessment of Food Waste Management Using Two Composting Techniques," Sustainability, MDPI, vol. 12(4), pages 1-23, February.
    3. Mohamed A. Hassaan & Antonio Pantaleo & Francesco Santoro & Marwa R. Elkatory & Giuseppe De Mastro & Amany El Sikaily & Safaa Ragab & Ahmed El Nemr, 2020. "Techno-Economic Analysis of ZnO Nanoparticles Pretreatments for Biogas Production from Barley Straw," Energies, MDPI, vol. 13(19), pages 1-26, September.
    4. Kumar, Aman & Singh, Ekta & Mishra, Rahul & Lo, Shang Lien & Kumar, Sunil, 2023. "Global trends in municipal solid waste treatment technologies through the lens of sustainable energy development opportunity," Energy, Elsevier, vol. 275(C).
    5. Im-orb, Karittha & Piroonlerkgul, Pakorn, 2023. "Sustainability analysis of the bio-dimethyl ether (bio-DME) production via integrated biomass gasification and direct DME Synthesis Process," Renewable Energy, Elsevier, vol. 208(C), pages 324-330.
    6. Zheng, Lei & Cheng, Shikun & Han, Yanzhao & Wang, Min & Xiang, Yue & Guo, Jiali & Cai, Di & Mang, Heinz-Peter & Dong, Taili & Li, Zifu & Yan, Zhengxu & Men, Yu, 2020. "Bio-natural gas industry in China: Current status and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    7. Constantin Stan & Gerardo Collaguazo & Constantin Streche & Tiberiu Apostol & Diana Mariana Cocarta, 2018. "Pilot-Scale Anaerobic Co-Digestion of the OFMSW: Improving Biogas Production and Startup," Sustainability, MDPI, vol. 10(6), pages 1-15, June.
    8. Parvez, A.M. & Mujtaba, I.M. & Wu, T., 2016. "Energy, exergy and environmental analyses of conventional, steam and CO2-enhanced rice straw gasification," Energy, Elsevier, vol. 94(C), pages 579-588.
    9. Wei En Tan & Peng Yen Liew & Lian See Tan & Kok Sin Woon & Nor Erniza Mohammad Rozali & Wai Shin Ho & Jamian NorRuwaida, 2022. "Life Cycle Assessment and Techno-Economic Analysis for Anaerobic Digestion as Cow Manure Management System," Energies, MDPI, vol. 15(24), pages 1-16, December.
    10. Alessandro Neri & Bruno Bernardi & Giuseppe Zimbalatti & Souraya Benalia, 2023. "An Overview of Anaerobic Digestion of Agricultural By-Products and Food Waste for Biomethane Production," Energies, MDPI, vol. 16(19), pages 1-20, September.
    11. Sara Rajabi Hamedani & Mauro Villarini & Andrea Colantoni & Maurizio Carlini & Massimo Cecchini & Francesco Santoro & Antonio Pantaleo, 2020. "Environmental and Economic Analysis of an Anaerobic Co-Digestion Power Plant Integrated with a Compost Plant," Energies, MDPI, vol. 13(11), pages 1-14, May.
    12. Kainthola, Jyoti & Kalamdhad, Ajay S. & Goud, Vaibhav V., 2020. "Optimization of process parameters for accelerated methane yield from anaerobic co-digestion of rice straw and food waste," Renewable Energy, Elsevier, vol. 149(C), pages 1352-1359.
    13. Yan, Mi & Liu, Yu & Song, Yucai & Xu, Aiming & Zhu, Gaojun & Jiang, Jiahao & Hantoko, Dwi, 2022. "Comprehensive experimental study on energy conversion of household kitchen waste via integrated hydrothermal carbonization and supercritical water gasification," Energy, Elsevier, vol. 242(C).
    14. Khalil, Munawar & Berawi, Mohammed Ali & Heryanto, Rudi & Rizalie, Akhmad, 2019. "Waste to energy technology: The potential of sustainable biogas production from animal waste in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 323-331.
    15. Chen, Guanyi & Liu, Gang & Yan, Beibei & Shan, Rui & Wang, Jianan & Li, Ting & Xu, Weiwei, 2016. "Experimental study of co-digestion of food waste and tall fescue for bio-gas production," Renewable Energy, Elsevier, vol. 88(C), pages 273-279.
    16. Siti Norliyana Harun & Marlia Mohd Hanafiah & Noorashikin Md Noor, 2022. "Rice Straw Utilisation for Bioenergy Production: A Brief Overview," Energies, MDPI, vol. 15(15), pages 1-17, July.
    17. Ziyao Fan & Huijuan Dong & Yong Geng & Minoru Fujii, 2023. "Life cycle cost–benefit efficiency of food waste treatment technologies in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(6), pages 4935-4956, June.
    18. You, Siming & Tong, Huanhuan & Armin-Hoiland, Joel & Tong, Yen Wah & Wang, Chi-Hwa, 2017. "Techno-economic and greenhouse gas savings assessment of decentralized biomass gasification for electrifying the rural areas of Indonesia," Applied Energy, Elsevier, vol. 208(C), pages 495-510.
    19. Chien Bong, Cassendra Phun & Ho, Wai Shin & Hashim, Haslenda & Lim, Jeng Shiun & Ho, Chin Siong & Peng Tan, William Soo & Lee, Chew Tin, 2017. "Review on the renewable energy and solid waste management policies towards biogas development in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 988-998.
    20. VAN Vlierberghe, C. & Carrere, H. & Bernet, N. & Santa-Catalina, G. & Frederic, S. & Escudie, R., 2022. "Co-ensiling and field wilting investigated as preparation methods for the ensiling of a wet harvested catch crop for biomethane production," Renewable Energy, Elsevier, vol. 195(C), pages 1230-1237.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:194:y:2020:i:c:s0360544220300219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.