IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v265y2023ics0360544222032509.html
   My bibliography  Save this article

Investigation of heat and mass transfer characteristics during the flame propagation of biomass straw from an initial linear fire source

Author

Listed:
  • Li, Cong
  • Xu, Zixuan
  • Wang, Yuqing
  • Xu, Wenbo
  • Yang, Rui
  • Zhang, Hui

Abstract

Biomass straw has gradually received attention as a new energy that is easily accessible. The deep understanding of burning characteristics is critical to the efficient and safe utilization of biomass straw as a new energy, and further benefit to estimate the hazard of straw fire disasters. In the present study, the straw stacked into a rectangle with a length of 1 m, and widths from 0.1 m to 0.6 m was ignited from in a width with a linear-source fire. The heat and mass transfer characteristics during the flame propagation were investigated. The results showed that the flame front shape evolved from concave to convex as the straw width widened. Specifically, the critical transition range of straw width was from 0.3 m to 0.4 m due to the change of the dominant heat transfer factors. The residual mass of straw decreased linearly because of the uniform flame spreading process, indicating a constant MLR. The MLR was determined by the function of the aspect ratio of the instantaneous combustion area, which is shown as n+1/n. The flame temperature above the center position of the rectangular straw increased first and then dropped gradually. The peak dimensionless temperature presented a piecewise function with (z−z0)m˙−2/5.

Suggested Citation

  • Li, Cong & Xu, Zixuan & Wang, Yuqing & Xu, Wenbo & Yang, Rui & Zhang, Hui, 2023. "Investigation of heat and mass transfer characteristics during the flame propagation of biomass straw from an initial linear fire source," Energy, Elsevier, vol. 265(C).
  • Handle: RePEc:eee:energy:v:265:y:2023:i:c:s0360544222032509
    DOI: 10.1016/j.energy.2022.126364
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222032509
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.126364?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tagami-Kanada, Nami & Yoshikuni, Koji & Mizuno, Satoru & Sawai, Toru & Fuchihata, Manabu & Ida, Tamio, 2022. "Combustion characteristics of densified solid biofuel with different aspect ratios," Renewable Energy, Elsevier, vol. 197(C), pages 1174-1182.
    2. Wang, Cui & Li, Linfeng & Chen, Yunan & Ge, Zhiwei & Jin, Hui, 2021. "Supercritical water gasification of wheat straw: Composition of reaction products and kinetic study," Energy, Elsevier, vol. 227(C).
    3. Nourelhouda Boukaous & Lokmane Abdelouahed & Mustapha Chikhi & Abdeslam-Hassen Meniai & Chetna Mohabeer & Taouk Bechara, 2018. "Combustion of Flax Shives, Beech Wood, Pure Woody Pseudo-Components and Their Chars: A Thermal and Kinetic Study," Energies, MDPI, vol. 11(8), pages 1-16, August.
    4. Cheng, Guishi & Zhao, Ying & Pan, Shijiu & Wang, Xiaoqiang & Dong, Changqing, 2020. "A comparative life cycle analysis of wheat straw utilization modes in China," Energy, Elsevier, vol. 194(C).
    5. Meng, Xiaoxiao & Zhou, Wei & Yan, Yonghong & Ren, Xiaohan & Ismail, Tamer M. & Sun, Rui, 2020. "Effects of preheating primary air and fuel size on the combustion characteristics of blended pinewood and corn straw in a fixed bed," Energy, Elsevier, vol. 210(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deng, Lei & Shi, Congling & Li, Haoran & Wan, Mei & Ren, Fei & Hou, Yanan & Tang, Fei, 2023. "Prediction of energy mass loss rate for biodiesel fire via machine learning and its physical modeling of flame radiation evolution," Energy, Elsevier, vol. 275(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Jialing & Rong, Siqi & Sun, Jingli & Peng, Zhiyong & Jin, Hui & Guo, Liejin & Zhang, Xiang & Zhou, Teng, 2022. "Optimal design of non-isothermal supercritical water gasification reactor: From biomass to hydrogen," Energy, Elsevier, vol. 244(PB).
    2. Zhang, Bowei & Zhao, Xiao & Zhang, Jie & Wang, Junying & Jin, Hui, 2023. "An investigation of the density of nano-confined subcritical/supercritical water," Energy, Elsevier, vol. 284(C).
    3. Li, Zhuoyu & Dai, Huaming & Zhai, Cheng, 2024. "Integrated porous self-sustaining combustion of inert pellets and reactive wood lamellae with additives: Dynamic co-production method for heat and hydrogen," Energy, Elsevier, vol. 303(C).
    4. Edwin Espinel Blanco & Guillermo Valencia Ochoa & Jorge Duarte Forero, 2020. "Combining Energy Management Indicators and Life Cycle Assessment Indicators to Promote Sustainability in a Paper Production Plant," Resources, MDPI, vol. 9(6), pages 1-21, June.
    5. Su, Hongcai & Yan, Mi & Wang, Shurong, 2022. "Recent advances in supercritical water gasification of biowaste catalyzed by transition metal-based catalysts for hydrogen production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    6. Ricardo Rebolledo-Leiva & Sofía Estévez & Diógenes Hernández & Gumersindo Feijoo & María Teresa Moreira & Sara González-García, 2024. "Apple Pomace Integrated Biorefinery for Biofuels Production: A Techno-Economic and Environmental Sustainability Analysis," Resources, MDPI, vol. 13(11), pages 1-18, November.
    7. Wu, Juanjuan & Zhang, Jian & Yi, Weiming & Cai, Hongzhen & Li, Yang & Su, Zhanpeng, 2022. "Agri-biomass supply chain optimization in north China: Model development and application," Energy, Elsevier, vol. 239(PD).
    8. Mizik, Tamás, 2022. "A bioetanol-termelés gazdasági és fenntarthatósági vetületei [Economic and sustainability aspects of bioethanol production]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(10), pages 1213-1241.
    9. Gomes, J.G. & Mitoura, J. & Guirardello, R., 2022. "Thermodynamic analysis for hydrogen production from the reaction of subcritical and supercritical gasification of the C. Vulgaris microalgae," Energy, Elsevier, vol. 260(C).
    10. Kamal Baharin, Nur Syahirah & Tagami-Kanada, Nami & Cherdkeattikul, Supitchaya & Hara, Hirofumi & Ida, Tamio, 2024. "Effects of repetitive production on the mechanical characteristic and chemical structure of green tea bio-coke," Renewable Energy, Elsevier, vol. 222(C).
    11. Yan, Mi & Liu, Yu & Song, Yucai & Xu, Aiming & Zhu, Gaojun & Jiang, Jiahao & Hantoko, Dwi, 2022. "Comprehensive experimental study on energy conversion of household kitchen waste via integrated hydrothermal carbonization and supercritical water gasification," Energy, Elsevier, vol. 242(C).
    12. Zhang, Xu & Wang, Qing & Cui, Da & Sun, Shipeng & Wang, Zhichao & Wang, Yuqi & Xu, Faxing & Wang, Zhenye & Zhang, Jinghui, 2024. "Mechanism of supercritical water gasification of corn stover for hydrogen-rich syngas: Composition of reaction products," Energy, Elsevier, vol. 288(C).
    13. Jaafar, Yehya & Abdelouahed, Lokmane & El Samrani, Antoine & El Hage, Roland & Taouk, Bechara, 2023. "Co-pyrolysis of plastic polymers and biomass: Effect of beech wood/plastic ratio and temperature on enhanced oil production in a tubular pyrolyzer," Renewable Energy, Elsevier, vol. 218(C).
    14. Mejdi Jeguirim & Lionel Limousy, 2019. "Biomass Chars: Elaboration, Characterization and Applications II," Energies, MDPI, vol. 12(3), pages 1-6, January.
    15. Budzeń, Małgorzata & Zając, Grzegorz & Sujak, Agnieszka & Szyszlak-Bargłowicz, Joanna, 2021. "Energetic and thermal characteristics of Lavatera thuringiaca L. biomass of different age produced from He–Ne laser light stimulated seeds," Renewable Energy, Elsevier, vol. 178(C), pages 520-531.
    16. Jun Zhang & Yanmin Li & Lin Mei & Xiaoliang Yu & Xun Lv & Jinping Wang & Jin Yan & Rongyue Sun, 2023. "Study on the Effect of Secondary Air Layout on CO Reduction Performance in a 75 t/h Biomass CFB Boiler Burning Wheat Straw," Energies, MDPI, vol. 16(8), pages 1-15, April.
    17. Li, Junjie & Zhang, Yueling & Yang, Yanli & Zhang, Xiaomei & Wang, Nana & Zheng, Yonghong & Tian, Yajun & Xie, Kechang, 2022. "Life cycle assessment and techno-economic analysis of ethanol production via coal and its competitors: A comparative study," Applied Energy, Elsevier, vol. 312(C).
    18. Khanali, Majid & Ghasemi-Mobtaker, Hassan & Varmazyar, Hossein & Mohammadkashi, Naghmeh & Chau, Kwok-wing & Nabavi-Pelesaraei, Ashkan, 2022. "Applying novel eco-exergoenvironmental toxicity index to select the best irrigation system of sunflower production," Energy, Elsevier, vol. 250(C).
    19. Nataša Dragutinović & Isabel Höfer & Martin Kaltschmitt, 2021. "Fuel Improvement Measures for Particulate Matter Emission Reduction during Corn Cob Combustion," Energies, MDPI, vol. 14(15), pages 1-23, July.
    20. Dmitry V. Boguslavsky & Konstantin S. Sharov & Natalia P. Sharova, 2022. "Using Alternative Sources of Energy for Decarbonization: A Piece of Cake, but How to Cook This Cake?," IJERPH, MDPI, vol. 19(23), pages 1-30, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:265:y:2023:i:c:s0360544222032509. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.