IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v189y2019ics0360544219319784.html
   My bibliography  Save this article

Combined cooling heating and power systems in greenhouses. Grassroots and retrofit design

Author

Listed:
  • Tataraki, Kalliopi G.
  • Kavvadias, Konstantinos C.
  • Maroulis, Zacharias B.

Abstract

Modern greenhouses are good candidates for combined cooling, heating and power generation (CCHP) systems. An analytical framework to assess the affordability of such systems for two different problems, is proposed; (a) the grassroots problem, i.e. the CCHP system is designed along with the greenhouse, and, (b) the retrofit problem, i.e. the addition of a CHP unit to an existing greenhouse. As a case study, the analysis is applied in three locations of Greece (North, Central, South) with different meteorological conditions, for two traditional products (tomato, cucumber). The results indicate that cogeneration is a cost-effective solution improving the economic and energetic efficiency of the facility. Furthermore, with the use of active cooling, the operating period of the greenhouse is increased, which significantly improves the cashflow. Product cultivation parameters and climatic conditions affect to a significant degree the overall performance. It is proved that the combined use of a CCHP and a conventional gas boiler for heating, is more profitable for tomato cultivation, achieving ROI 23%, 28%, and 27%, in North, Central and South Greece, respectively. The sensitivity of the investment’s feasibility is quantified in regards to energy prices, and pricing policies, which is one of the most important factors.

Suggested Citation

  • Tataraki, Kalliopi G. & Kavvadias, Konstantinos C. & Maroulis, Zacharias B., 2019. "Combined cooling heating and power systems in greenhouses. Grassroots and retrofit design," Energy, Elsevier, vol. 189(C).
  • Handle: RePEc:eee:energy:v:189:y:2019:i:c:s0360544219319784
    DOI: 10.1016/j.energy.2019.116283
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219319784
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116283?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vadiee, Amir & Martin, Viktoria, 2012. "Energy management in horticultural applications through the closed greenhouse concept, state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5087-5100.
    2. Chou, S. K. & Chua, K. J. & Ho, J. C. & Ooi, C. L., 2004. "On the study of an energy-efficient greenhouse for heating, cooling and dehumidification applications," Applied Energy, Elsevier, vol. 77(4), pages 355-373, April.
    3. Cuce, Erdem & Harjunowibowo, Dewanto & Cuce, Pinar Mert, 2016. "Renewable and sustainable energy saving strategies for greenhouse systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 34-59.
    4. Ozgener, Onder & Hepbasli, Arif, 2007. "A review on the energy and exergy analysis of solar assisted heat pump systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(3), pages 482-496, April.
    5. Urbanucci, Luca & Bruno, Joan Carles & Testi, Daniele, 2019. "Thermodynamic and economic analysis of the integration of high-temperature heat pumps in trigeneration systems," Applied Energy, Elsevier, vol. 238(C), pages 516-533.
    6. Canakci, M. & Akinci, I., 2006. "Energy use pattern analyses of greenhouse vegetable production," Energy, Elsevier, vol. 31(8), pages 1243-1256.
    7. Kaplani, E. & Kaplanis, S. & Mondal, S., 2018. "A spatiotemporal universal model for the prediction of the global solar radiation based on Fourier series and the site altitude," Renewable Energy, Elsevier, vol. 126(C), pages 933-942.
    8. Moreton, O.R. & Rowley, P.N., 2012. "The feasibility of biomass CHP as an energy and CO2 source for commercial glasshouses," Applied Energy, Elsevier, vol. 96(C), pages 339-346.
    9. Tataraki, Kalliopi G. & Kavvadias, Konstantinos C. & Maroulis, Zacharias B., 2018. "A systematic approach to evaluate the economic viability of Combined Cooling Heating and Power systems over conventional technologies," Energy, Elsevier, vol. 148(C), pages 283-295.
    10. Hepbasli, Arif, 2011. "A comparative investigation of various greenhouse heating options using exergy analysis method," Applied Energy, Elsevier, vol. 88(12), pages 4411-4423.
    11. van der Veen, Reinier A.C. & Kasmire, Julia, 2015. "Combined heat and power in Dutch greenhouses: A case study of technology diffusion," Energy Policy, Elsevier, vol. 87(C), pages 8-16.
    12. Martínez-Lera, S. & Ballester, J., 2010. "A novel method for the design of CHCP (combined heat, cooling and power) systems for buildings," Energy, Elsevier, vol. 35(7), pages 2972-2984.
    13. Kavvadias, K.C., 2016. "Energy price spread as a driving force for combined generation investments: A view on Europe," Energy, Elsevier, vol. 115(P3), pages 1632-1639.
    14. Kaplanis, S.N., 2006. "New methodologies to estimate the hourly global solar radiation; Comparisons with existing models," Renewable Energy, Elsevier, vol. 31(6), pages 781-790.
    15. Fang, Fang & Wei, Le & Liu, Jizhen & Zhang, Jianhua & Hou, Guolian, 2012. "Complementary configuration and operation of a CCHP-ORC system," Energy, Elsevier, vol. 46(1), pages 211-220.
    16. Cho, Heejin & Smith, Amanda D. & Mago, Pedro, 2014. "Combined cooling, heating and power: A review of performance improvement and optimization," Applied Energy, Elsevier, vol. 136(C), pages 168-185.
    17. Jradi, M. & Riffat, S., 2014. "Tri-generation systems: Energy policies, prime movers, cooling technologies, configurations and operation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 396-415.
    18. Badami, M. & Camillieri, F. & Portoraro, A. & Vigliani, E., 2014. "Energetic and economic assessment of cogeneration plants: A comparative design and experimental condition study," Energy, Elsevier, vol. 71(C), pages 255-262.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kalliopi Tataraki & Eugenia Giannini & Konstantinos Kavvadias & Zacharias Maroulis, 2020. "Cogeneration Economics for Greenhouses in Europe," Energies, MDPI, vol. 13(13), pages 1-27, July.
    2. Bouadila, Salwa & Baddadi, Sara & Skouri, Safa & Ayed, Rabeb, 2022. "Assessing heating and cooling needs of hydroponic sheltered system in mediterranean climate: A case study sustainable fodder production," Energy, Elsevier, vol. 261(PB).
    3. Ouammi, Ahmed, 2021. "Model predictive control for optimal energy management of connected cluster of microgrids with net zero energy multi-greenhouses," Energy, Elsevier, vol. 234(C).
    4. Sun, Weituo & Wei, Xiaoming & Zhou, Baochang & Lu, Chungui & Guo, Wenzhong, 2022. "Greenhouse heating by energy transfer between greenhouses: System design and implementation," Applied Energy, Elsevier, vol. 325(C).
    5. Nima Asgari & Matthew T. McDonald & Joshua M. Pearce, 2023. "Energy Modeling and Techno-Economic Feasibility Analysis of Greenhouses for Tomato Cultivation Utilizing the Waste Heat of Cryptocurrency Miners," Energies, MDPI, vol. 16(3), pages 1-42, January.
    6. Thaddaeus Obaji Ariom & Elodie Dimon & Eva Nambeye & Ndèye Seynabou Diouf & Oludotun Olusegun Adelusi & Sofiane Boudalia, 2022. "Climate-Smart Agriculture in African Countries: A Review of Strategies and Impacts on Smallholder Farmers," Sustainability, MDPI, vol. 14(18), pages 1-32, September.
    7. Ge, Quanwu & Ke, Zhixin & Liu, Yutong & Chai, Fu & Yang, Wenhua & Zhang, Zhili & Wang, Yang, 2023. "Low-carbon strategy of demand-based regulating heating and lighting for the heterogeneous environment in beijing Venlo-type greenhouse," Energy, Elsevier, vol. 267(C).
    8. Dimitra I. Pomoni & Maria K. Koukou & Michail Gr. Vrachopoulos & Labros Vasiliadis, 2023. "A Review of Hydroponics and Conventional Agriculture Based on Energy and Water Consumption, Environmental Impact, and Land Use," Energies, MDPI, vol. 16(4), pages 1-26, February.
    9. Aikaterini Papadimitriou & Vassilios Vassiliou & Kalliopi Tataraki & Eugenia Giannini & Zacharias Maroulis, 2020. "Economic Assessment of Cogeneration Systems in Operation," Energies, MDPI, vol. 13(9), pages 1-15, May.
    10. Anna-Maria N. Dimitropoulou & Vasileios Z. Maroulis & Eugenia N. Giannini, 2023. "A Simple and Effective Model for Predicting the Thermal Energy Requirements of Greenhouses in Europe," Energies, MDPI, vol. 16(19), pages 1-27, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marucci, Alvaro & Cappuccini, Andrea, 2016. "Dynamic photovoltaic greenhouse: Energy efficiency in clear sky conditions," Applied Energy, Elsevier, vol. 170(C), pages 362-376.
    2. Al Moussawi, Houssein & Fardoun, Farouk & Louahlia, Hasna, 2017. "Selection based on differences between cogeneration and trigeneration in various prime mover technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 491-511.
    3. Tataraki, Kalliopi G. & Kavvadias, Konstantinos C. & Maroulis, Zacharias B., 2018. "A systematic approach to evaluate the economic viability of Combined Cooling Heating and Power systems over conventional technologies," Energy, Elsevier, vol. 148(C), pages 283-295.
    4. Aikaterini Papadimitriou & Vassilios Vassiliou & Kalliopi Tataraki & Eugenia Giannini & Zacharias Maroulis, 2020. "Economic Assessment of Cogeneration Systems in Operation," Energies, MDPI, vol. 13(9), pages 1-15, May.
    5. Barkat Rabbi & Zhong-Hua Chen & Subbu Sethuvenkatraman, 2019. "Protected Cropping in Warm Climates: A Review of Humidity Control and Cooling Methods," Energies, MDPI, vol. 12(14), pages 1-24, July.
    6. Yano, Akira & Cossu, Marco, 2019. "Energy sustainable greenhouse crop cultivation using photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 116-137.
    7. Kang, Ligai & Yang, Junhong & An, Qingsong & Deng, Shuai & Zhao, Jun & Wang, Hui & Li, Zelin, 2017. "Effects of load following operational strategy on CCHP system with an auxiliary ground source heat pump considering carbon tax and electricity feed in tariff," Applied Energy, Elsevier, vol. 194(C), pages 454-466.
    8. Ge, Quanwu & Ke, Zhixin & Liu, Yutong & Chai, Fu & Yang, Wenhua & Zhang, Zhili & Wang, Yang, 2023. "Low-carbon strategy of demand-based regulating heating and lighting for the heterogeneous environment in beijing Venlo-type greenhouse," Energy, Elsevier, vol. 267(C).
    9. Zhang, Na & Wang, Zefeng & Lior, Noam & Han, Wei, 2018. "Advancement of distributed energy methods by a novel high efficiency solar-assisted combined cooling, heating and power system," Applied Energy, Elsevier, vol. 219(C), pages 179-186.
    10. Wang, Jiangjiang & Sui, Jun & Jin, Hongguang, 2015. "An improved operation strategy of combined cooling heating and power system following electrical load," Energy, Elsevier, vol. 85(C), pages 654-666.
    11. Dafni Despoina Avgoustaki & George Xydis, 2020. "Plant factories in the water-food-energy Nexus era: a systematic bibliographical review," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(2), pages 253-268, April.
    12. Briola, Stefano & Gabbrielli, Roberto & Baccioli, Andrea & Fino, Andrea & Bischi, Aldo, 2021. "Thermo-economic analysis of a novel trigeneration cycle enabled by two-phase machines," Energy, Elsevier, vol. 227(C).
    13. Chen, Jiaoliao & Xu, Fang & Tan, Dapeng & Shen, Zheng & Zhang, Libin & Ai, Qinglin, 2015. "A control method for agricultural greenhouses heating based on computational fluid dynamics and energy prediction model," Applied Energy, Elsevier, vol. 141(C), pages 106-118.
    14. Espirito Santo, Denilson Boschiero do & Gallo, Waldyr Luiz Ribeiro, 2017. "Utilizing primary energy savings and exergy destruction to compare centralized thermal plants and cogeneration/trigeneration systems," Energy, Elsevier, vol. 120(C), pages 785-795.
    15. Guillermo Rey & Carlos Ulloa & José Luís Míguez & Antón Cacabelos, 2016. "Suitability Assessment of an ICE-Based Micro-CCHP Unit in Different Spanish Climatic Zones: Application of an Experimental Model in Transient Simulation," Energies, MDPI, vol. 9(11), pages 1-13, November.
    16. Zheng, C.Y. & Wu, J.Y. & Zhai, X.Q. & Yang, G. & Wang, R.Z., 2016. "Experimental and modeling investigation of an ICE (internal combustion engine) based micro-cogeneration device considering overheat protection controls," Energy, Elsevier, vol. 101(C), pages 447-461.
    17. Kang, Shushuo & Li, Hongqiang & Lei, Jing & Liu, Lifang & Cai, Bo & Zhang, Guoqiang, 2015. "A new utilization approach of the waste heat with mid-low temperature in the combined heating and power system integrating heat pump," Applied Energy, Elsevier, vol. 160(C), pages 185-193.
    18. Pérez-Alonso, J. & Pérez-García, M. & Pasamontes-Romera, M. & Callejón-Ferre, A.J., 2012. "Performance analysis and neural modelling of a greenhouse integrated photovoltaic system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4675-4685.
    19. Ren, Fukang & Wei, Ziqing & Zhai, Xiaoqiang, 2022. "A review on the integration and optimization of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    20. Gao, Lei & Hwang, Yunho & Cao, Tao, 2019. "An overview of optimization technologies applied in combined cooling, heating and power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:189:y:2019:i:c:s0360544219319784. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.