IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v96y2012icp339-346.html
   My bibliography  Save this article

The feasibility of biomass CHP as an energy and CO2 source for commercial glasshouses

Author

Listed:
  • Moreton, O.R.
  • Rowley, P.N.

Abstract

A techno-economic modelling tool has been developed to examine the feasibility of biomass combined heat and power (CHP) technologies to provide the energy and CO2 demands of commercial horticultural glasshouses. Using the UK as a case study, energy and CO2 demands of candidate glasshouse installations on an hourly basis are established using both measured and benchmark datasets. Modelled electrical and thermal generation profiles for a number of commercially available small-scale biomass CHP systems of rated outputs of 0.1–5MWe are also derived, and the results of their application within the modelling tool to carry out multi-parametric techno-economic analyses for various operational scenarios are presented. The impacts of both capital grant and generation tariff-based support mechanisms upon economic feasibility are investigated, along with that of variations in feedstock fuel prices. Net CO2 reductions accruing from the implementation of biomass CHP are also assessed. Finally, technical options, marginal costs and sale tariffs for CO2 recovery and supply are evaluated for specific scenarios. The results indicate that feasibility is very sensitive to the relationship between specific biomass CHP power:heat ratios and their match with glasshouse temporal electrical and thermal energy demand profiles, along with economic factors such as specific levels of capital and tariff-based support. With the utilisation of currently available financial support mechanisms, biomass CHP offers significant promise for realising economically viable significant CO2 emission reductions in this sector.

Suggested Citation

  • Moreton, O.R. & Rowley, P.N., 2012. "The feasibility of biomass CHP as an energy and CO2 source for commercial glasshouses," Applied Energy, Elsevier, vol. 96(C), pages 339-346.
  • Handle: RePEc:eee:appene:v:96:y:2012:i:c:p:339-346
    DOI: 10.1016/j.apenergy.2012.02.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261912001171
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.02.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. del Ri­o González, Pablo, 2008. "Ten years of renewable electricity policies in Spain: An analysis of successive feed-in tariff reforms," Energy Policy, Elsevier, vol. 36(8), pages 2907-2919, August.
    2. Westner, Günther & Madlener, Reinhard, 2010. "The benefit of regional diversification of cogeneration investments in Europe: A mean-variance portfolio analysis," Energy Policy, Elsevier, vol. 38(12), pages 7911-7920, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kalliopi Tataraki & Eugenia Giannini & Konstantinos Kavvadias & Zacharias Maroulis, 2020. "Cogeneration Economics for Greenhouses in Europe," Energies, MDPI, vol. 13(13), pages 1-27, July.
    2. Puig-Arnavat, Maria & Bruno, Joan Carles & Coronas, Alberto, 2014. "Modeling of trigeneration configurations based on biomass gasification and comparison of performance," Applied Energy, Elsevier, vol. 114(C), pages 845-856.
    3. Tataraki, Kalliopi G. & Kavvadias, Konstantinos C. & Maroulis, Zacharias B., 2019. "Combined cooling heating and power systems in greenhouses. Grassroots and retrofit design," Energy, Elsevier, vol. 189(C).
    4. de Ridder, Fjo & van Roy, Jeroen & de Schutter, Bert & Mazairac, Wiet, 2021. "An exploration of shared heat storage systems in the greenhouse horticulture industry," Energy, Elsevier, vol. 235(C).
    5. Oropeza-Perez, Ivan & Østergaard, Poul Alberg, 2014. "Energy saving potential of utilizing natural ventilation under warm conditions – A case study of Mexico," Applied Energy, Elsevier, vol. 130(C), pages 20-32.
    6. Huang, Y. & McIlveen-Wright, D.R. & Rezvani, S. & Huang, M.J. & Wang, Y.D. & Roskilly, A.P. & Hewitt, N.J., 2013. "Comparative techno-economic analysis of biomass fuelled combined heat and power for commercial buildings," Applied Energy, Elsevier, vol. 112(C), pages 518-525.
    7. Schüwer, Dietmar & Krüger, Christine & Merten, Frank & Nebel, Arjuna, 2016. "The potential of grid-orientated distributed cogeneration on the minutes reserve market and how changing the operating mode impacts on CO2 emissions," Energy, Elsevier, vol. 110(C), pages 23-33.
    8. Wang, Jiang-Jiang & Xu, Zi-Long & Jin, Hong-Guang & Shi, Guo-hua & Fu, Chao & Yang, Kun, 2014. "Design optimization and analysis of a biomass gasification based BCHP system: A case study in Harbin, China," Renewable Energy, Elsevier, vol. 71(C), pages 572-583.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Westner, Günther & Madlener, Reinhard, 2011. "Development of cogeneration in Germany: A mean-variance portfolio analysis of individual technology’s prospects in view of the new regulatory framework," Energy, Elsevier, vol. 36(8), pages 5301-5313.
    2. Jaco P. Weideman & Roula Inglesi-Lotz, 2016. "Structural Breaks in Renewable Energy in South Africa: A Bai and Perron Break Test Application," Working Papers 201636, University of Pretoria, Department of Economics.
    3. deLlano-Paz, Fernando & Calvo-Silvosa, Anxo & Iglesias Antelo, Susana & Soares, Isabel, 2015. "The European low-carbon mix for 2030: The role of renewable energy sources in an environmentally and socially efficient approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 49-61.
    4. Palzer, Andreas & Westner, Günther & Madlener, Reinhard, 2013. "Evaluation of different hedging strategies for commodity price risks of industrial cogeneration plants," Energy Policy, Elsevier, vol. 59(C), pages 143-160.
    5. Lang, Joachim & Madlener, Reinhard, 2010. "Portfolio Optimization for Power Plants: The Impact of Credit Risk Mitigation and Margining," FCN Working Papers 11/2010, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    6. Paulino Martinez-Fernandez & Fernando deLlano-Paz & Anxo Calvo-Silvosa & Isabel Soares, 2019. "Assessing Renewable Energy Sources for Electricity (RES-E) Potential Using a CAPM-Analogous Multi-Stage Model," Energies, MDPI, vol. 12(19), pages 1-20, September.
    7. deLlano-Paz, Fernando & Martínez Fernandez, Paulino & Soares, Isabel, 2016. "Addressing 2030 EU policy framework for energy and climate: Cost, risk and energy security issues," Energy, Elsevier, vol. 115(P2), pages 1347-1360.
    8. Paulino Martinez-Fernandez & Fernando deLlano-Paz & Anxo Calvo-Silvosa & Isabel Soares, 2018. "Pollutant versus non-pollutant generation technologies: a CML-analogous analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(1), pages 199-212, December.
    9. Bean, Patrick & Blazquez, Jorge & Nezamuddin, Nora, 2017. "Assessing the cost of renewable energy policy options – A Spanish wind case study," Renewable Energy, Elsevier, vol. 103(C), pages 180-186.
    10. Comodi, Gabriele & Rossi, Mosè, 2016. "Energy versus economic effectiveness in CHP (combined heat and power) applications: Investigation on the critical role of commodities price, taxation and power grid mix efficiency," Energy, Elsevier, vol. 109(C), pages 124-136.
    11. Komarov, Dragan & Stupar, Slobodan & Simonović, Aleksandar & Stanojević, Marija, 2012. "Prospects of wind energy sector development in Serbia with relevant regulatory framework overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2618-2630.
    12. Dominik Kryzia & Marta Kuta & Dominika Matuszewska & Piotr Olczak, 2020. "Analysis of the Potential for Gas Micro-Cogeneration Development in Poland Using the Monte Carlo Method," Energies, MDPI, vol. 13(12), pages 1-24, June.
    13. Ibanez-Lopez, A.S. & Moratilla-Soria, B.Y., 2017. "An assessment of Spain's new alternative energy support framework and its long-term impact on wind power development and system costs through behavioral dynamic simulation," Energy, Elsevier, vol. 138(C), pages 629-646.
    14. Krajacic, Goran & Duic, Neven & Tsikalakis, Antonis & Zoulias, Manos & Caralis, George & Panteri, Eirini & Carvalho, Maria da Graça, 2011. "Feed-in tariffs for promotion of energy storage technologies," Energy Policy, Elsevier, vol. 39(3), pages 1410-1425, March.
    15. Carlo Mari, 2018. "CO 2 Price Volatility Effects on Optimal Power System Portfolios," Energies, MDPI, vol. 11(7), pages 1-18, July.
    16. Blyth, William & Bunn, Derek & Kettunen, Janne & Wilson, Tom, 2009. "Policy interactions, risk and price formation in carbon markets," Energy Policy, Elsevier, vol. 37(12), pages 5192-5207, December.
    17. Westner, Günther & Madlener, Reinhard, 2010. "The benefit of regional diversification of cogeneration investments in Europe: A mean-variance portfolio analysis," Energy Policy, Elsevier, vol. 38(12), pages 7911-7920, December.
    18. Rowan Adams & Tooraj Jamasb, 2016. "Optimal Power Generation Portfolios with Renewables: An Application to the UK," Working Papers EPRG 1620, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    19. Westner, Günther & Madlener, Reinhard, 2012. "Investment in new power generation under uncertainty: Benefits of CHP vs. condensing plants in a copula-based analysis," Energy Economics, Elsevier, vol. 34(1), pages 31-44.
    20. Al-Amir, Jawaher & Abu-Hijleh, Bassam, 2013. "Strategies and policies from promoting the use of renewable energy resource in the UAE," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 660-667.

    More about this item

    Keywords

    Biomass; Biofuel; CHP; Glasshouse; Economics; CO2 recovery;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:96:y:2012:i:c:p:339-346. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.