IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i11p969-d83314.html
   My bibliography  Save this article

Suitability Assessment of an ICE-Based Micro-CCHP Unit in Different Spanish Climatic Zones: Application of an Experimental Model in Transient Simulation

Author

Listed:
  • Guillermo Rey

    (Defense University Center, Naval Academy, 36920 Marín, Spain)

  • Carlos Ulloa

    (Defense University Center, Naval Academy, 36920 Marín, Spain)

  • José Luís Míguez

    (Industrial Engineering School, University of Vigo, Campus Lagoas Marcosende, 36310 Vigo, Spain)

  • Antón Cacabelos

    (Defense University Center, Naval Academy, 36920 Marín, Spain)

Abstract

Tri-generation plants will have an important role in the near future in the residential sector where heating and cooling demands come into play throughout the year. Depending on the building’s location, the characteristics of its enclosure and its use, the thermal loads and demands will be different. This article analyses and compares a combined cooling, heating and power (CCHP) system tested in the laboratory and a single household located in Spain. The cooling capacity is obtained using a reversible heat pump where the compressor is driven directly by a gas engine with internal combustion engine (ICE) technology. The tests were carried out in a work bench at three different operating speeds. A variable-speed model is developed in the TRNSYS simulation environment with an operating strategy following the thermal load (FTL). Once the micro-CCHP system was modeled with experimental data and validated, it was dynamically simulated to analyze its performance in different climatic zones defined in the Spanish “Código Técnico de la Edificación” (CTE). This study reveals that the micro-CCHP system is suitable in mild weathers during the summer season.

Suggested Citation

  • Guillermo Rey & Carlos Ulloa & José Luís Míguez & Antón Cacabelos, 2016. "Suitability Assessment of an ICE-Based Micro-CCHP Unit in Different Spanish Climatic Zones: Application of an Experimental Model in Transient Simulation," Energies, MDPI, vol. 9(11), pages 1-13, November.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:11:p:969-:d:83314
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/11/969/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/11/969/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carlos Ulloa & Jacobo Porteiro & Pablo Eguía & José M. Pousada-Carballo, 2013. "Application Model for a Stirling Engine Micro-Generation System in Caravans in Different European Locations," Energies, MDPI, vol. 6(2), pages 1-16, February.
    2. Zheng, C.Y. & Wu, J.Y. & Zhai, X.Q., 2014. "A novel operation strategy for CCHP systems based on minimum distance," Applied Energy, Elsevier, vol. 128(C), pages 325-335.
    3. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa & Zhai, Zhiqiang (John), 2011. "Performance comparison of combined cooling heating and power system in different operation modes," Applied Energy, Elsevier, vol. 88(12), pages 4621-4631.
    4. Campos Celador, A. & Erkoreka, A. & Martin Escudero, K. & Sala, J.M., 2011. "Feasibility of small-scale gas engine-based residential cogeneration in Spain," Energy Policy, Elsevier, vol. 39(6), pages 3813-3821, June.
    5. Barbieri, Enrico Saverio & Melino, Francesco & Morini, Mirko, 2012. "Influence of the thermal energy storage on the profitability of micro-CHP systems for residential building applications," Applied Energy, Elsevier, vol. 97(C), pages 714-722.
    6. Horvath, Christopher & Hwang, Yunho & Radermacher, Reinhard & Gerstler, William & Tang, Ching-Jen, 2014. "Waste heat and electrically driven hybrid cooling systems for a high ambient temperature, off-grid application," Energy, Elsevier, vol. 66(C), pages 711-721.
    7. Wu, J.Y. & Wang, J.L. & Li, S. & Wang, R.Z., 2014. "Experimental and simulative investigation of a micro-CCHP (micro combined cooling, heating and power) system with thermal management controller," Energy, Elsevier, vol. 68(C), pages 444-453.
    8. Cho, Heejin & Smith, Amanda D. & Mago, Pedro, 2014. "Combined cooling, heating and power: A review of performance improvement and optimization," Applied Energy, Elsevier, vol. 136(C), pages 168-185.
    9. Jradi, M. & Riffat, S., 2014. "Tri-generation systems: Energy policies, prime movers, cooling technologies, configurations and operation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 396-415.
    10. Monteiro, Eliseu & Moreira, Nuno Afonso & Ferreira, Sérgio, 2009. "Planning of micro-combined heat and power systems in the Portuguese scenario," Applied Energy, Elsevier, vol. 86(3), pages 290-298, March.
    11. Chesi, Andrea & Ferrara, Giovanni & Ferrari, Lorenzo & Magnani, Sandro & Tarani, Fabio, 2013. "Influence of the heat storage size on the plant performance in a Smart User case study," Applied Energy, Elsevier, vol. 112(C), pages 1454-1465.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aidong Zeng & Sipeng Hao & Jia Ning & Qingshan Xu & Ling Jiang, 2020. "Research on Real-Time Optimized Operation and Dispatching Strategy for Integrated Energy System Based on Error Correction," Energies, MDPI, vol. 13(11), pages 1-21, June.
    2. Guozheng Li & Rui Wang & Tao Zhang & Mengjun Ming, 2018. "Multi-Objective Optimal Design of Renewable Energy Integrated CCHP System Using PICEA-g," Energies, MDPI, vol. 11(4), pages 1-26, March.
    3. Ana Ogando & Natalia Cid & Marta Fernández, 2017. "Energy Modelling and Automated Calibrations of Ancient Building Simulations: A Case Study of a School in the Northwest of Spain," Energies, MDPI, vol. 10(6), pages 1-17, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guillermo Rey & Carlos Ulloa & Jose Luis Míguez & Elena Arce, 2016. "Development of an ICE-Based Micro-CHP System Based on a Stirling Engine; Methodology for a Comparative Study of its Performance and Sensitivity Analysis in Recreational Sailing Boats in Different Euro," Energies, MDPI, vol. 9(4), pages 1-14, March.
    2. Wang, Jiangjiang & Sui, Jun & Jin, Hongguang, 2015. "An improved operation strategy of combined cooling heating and power system following electrical load," Energy, Elsevier, vol. 85(C), pages 654-666.
    3. Bai, Zhang & Liu, Taixiu & Liu, Qibin & Lei, Jing & Gong, Liang & Jin, Hongguang, 2018. "Performance investigation of a new cooling, heating and power system with methanol decomposition based chemical recuperation process," Applied Energy, Elsevier, vol. 229(C), pages 1152-1163.
    4. Kang, Ligai & Yang, Junhong & An, Qingsong & Deng, Shuai & Zhao, Jun & Wang, Hui & Li, Zelin, 2017. "Effects of load following operational strategy on CCHP system with an auxiliary ground source heat pump considering carbon tax and electricity feed in tariff," Applied Energy, Elsevier, vol. 194(C), pages 454-466.
    5. Han, Jie & Ouyang, Leixin & Xu, Yuzhen & Zeng, Rong & Kang, Shushuo & Zhang, Guoqiang, 2016. "Current status of distributed energy system in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 288-297.
    6. Wang, Chengshan & Lv, Chaoxian & Li, Peng & Song, Guanyu & Li, Shuquan & Xu, Xiandong & Wu, Jianzhong, 2018. "Modeling and optimal operation of community integrated energy systems: A case study from China," Applied Energy, Elsevier, vol. 230(C), pages 1242-1254.
    7. Ahn, Hyeunguk & Rim, Donghyun & Freihaut, James D., 2018. "Performance assessment of hybrid chiller systems for combined cooling, heating and power production," Applied Energy, Elsevier, vol. 225(C), pages 501-512.
    8. Ren, Fukang & Lin, Xiaozhen & Wei, Ziqing & Zhai, Xiaoqiang & Yang, Jianrong, 2022. "A novel planning method for design and dispatch of hybrid energy systems," Applied Energy, Elsevier, vol. 321(C).
    9. González-Pino, I. & Pérez-Iribarren, E. & Campos-Celador, A. & Las-Heras-Casas, J. & Sala, J.M., 2015. "Influence of the regulation framework on the feasibility of a Stirling engine-based residential micro-CHP installation," Energy, Elsevier, vol. 84(C), pages 575-588.
    10. Ju, Liwei & Tan, Zhongfu & Li, Huanhuan & Tan, Qingkun & Yu, Xiaobao & Song, Xiaohua, 2016. "Multi-objective operation optimization and evaluation model for CCHP and renewable energy based hybrid energy system driven by distributed energy resources in China," Energy, Elsevier, vol. 111(C), pages 322-340.
    11. Ahn, Hyeunguk & Freihaut, James D. & Rim, Donghyun, 2019. "Economic feasibility of combined cooling, heating, and power (CCHP) systems considering electricity standby tariffs," Energy, Elsevier, vol. 169(C), pages 420-432.
    12. Li, Longxi & Yu, Shiwei & Mu, Hailin & Li, Huanan, 2018. "Optimization and evaluation of CCHP systems considering incentive policies under different operation strategies," Energy, Elsevier, vol. 162(C), pages 825-840.
    13. Gu, Wei & Lu, Shuai & Wu, Zhi & Zhang, Xuesong & Zhou, Jinhui & Zhao, Bo & Wang, Jun, 2017. "Residential CCHP microgrid with load aggregator: Operation mode, pricing strategy, and optimal dispatch," Applied Energy, Elsevier, vol. 205(C), pages 173-186.
    14. Li, Xian & Kan, Xiang & Sun, Xiangyu & Zhao, Yao & Ge, Tianshu & Dai, Yanjun & Wang, Chi-Hwa, 2019. "Performance analysis of a biomass gasification-based CCHP system integrated with variable-effect LiBr-H2O absorption cooling and desiccant dehumidification," Energy, Elsevier, vol. 176(C), pages 961-979.
    15. Gao, Lei & Hwang, Yunho & Cao, Tao, 2019. "An overview of optimization technologies applied in combined cooling, heating and power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    16. Li, Yaohong & Tian, Ran & Wei, Mingshan, 2022. "Operation strategy for interactive CCHP system based on energy complementary characteristics of diverse operation strategies," Applied Energy, Elsevier, vol. 310(C).
    17. Wang, Jiangjiang & Yang, Ying & Mao, Tianzhi & Sui, Jun & Jin, Hongguang, 2015. "Life cycle assessment (LCA) optimization of solar-assisted hybrid CCHP system," Applied Energy, Elsevier, vol. 146(C), pages 38-52.
    18. Ruan, Yingjun & Liu, Qingrong & Li, Zhengwei & Wu, Jiazheng, 2016. "Optimization and analysis of Building Combined Cooling, Heating and Power (BCHP) plants with chilled ice thermal storage system," Applied Energy, Elsevier, vol. 179(C), pages 738-754.
    19. Al Moussawi, Houssein & Fardoun, Farouk & Louahlia, Hasna, 2017. "Selection based on differences between cogeneration and trigeneration in various prime mover technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 491-511.
    20. Guozheng Li & Rui Wang & Tao Zhang & Mengjun Ming, 2018. "Multi-Objective Optimal Design of Renewable Energy Integrated CCHP System Using PICEA-g," Energies, MDPI, vol. 11(4), pages 1-26, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:11:p:969-:d:83314. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.