Characterization of high-temperature PCMs for enhancing passive safety and heat removal capabilities in nuclear reactor systems
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2019.116137
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zhang, Nan & Yuan, Yanping & Du, Yanxia & Cao, Xiaoling & Yuan, Yaguang, 2014. "Preparation and properties of palmitic-stearic acid eutectic mixture/expanded graphite composite as phase change material for energy storage," Energy, Elsevier, vol. 78(C), pages 950-956.
- Lazaro, Ana & Peñalosa, Conchita & Solé, Aran & Diarce, Gonzalo & Haussmann, Thomas & Fois, Magali & Zalba, Belén & Gshwander, Stefan & Cabeza, Luisa F., 2013. "Intercomparative tests on phase change materials characterisation with differential scanning calorimeter," Applied Energy, Elsevier, vol. 109(C), pages 415-420.
- Zhang, Suling & Wu, Wei & Wang, Shuangfeng, 2017. "Preparation, thermal properties and thermal reliability of a novel mid-temperature composite phase change material for energy conservation," Energy, Elsevier, vol. 130(C), pages 228-235.
- Sarı, A & Kaygusuz, K, 2003. "Some fatty acids used for latent heat storage: thermal stability and corrosion of metals with respect to thermal cycling," Renewable Energy, Elsevier, vol. 28(6), pages 939-948.
- Tahan Latibari, Sara & Mehrali, Mohammad & Mehrali, Mehdi & Afifi, Amalina Binti Muhammad & Mahlia, Teuku Meurah Indra & Akhiani, Amir Reza & Metselaar, Hendrik Simon Cornelis, 2015. "Facile synthesis and thermal performances of stearic acid/titania core/shell nanocapsules by sol–gel method," Energy, Elsevier, vol. 85(C), pages 635-644.
- Karaipekli, Ali & Sarı, Ahmet & Kaygusuz, Kamil, 2007. "Thermal conductivity improvement of stearic acid using expanded graphite and carbon fiber for energy storage applications," Renewable Energy, Elsevier, vol. 32(13), pages 2201-2210.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Sobczak, Jolanta & Żyła, Gaweł, 2024. "Nano and microcomposites as gamma and X-ray ionizing radiation shielding materials — A review," Energy, Elsevier, vol. 290(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yuan, Yanping & Zhang, Nan & Li, Tianyu & Cao, Xiaoling & Long, Weiyue, 2016. "Thermal performance enhancement of palmitic-stearic acid by adding graphene nanoplatelets and expanded graphite for thermal energy storage: A comparative study," Energy, Elsevier, vol. 97(C), pages 488-497.
- Cai, Yibing & Gao, Chuntao & Zhang, Ting & Zhang, Zhen & Wei, Qufu & Du, Jinmei & Hu, Yuan & Song, Lei, 2013. "Influences of expanded graphite on structural morphology and thermal performance of composite phase change materials consisting of fatty acid eutectics and electrospun PA6 nanofibrous mats," Renewable Energy, Elsevier, vol. 57(C), pages 163-170.
- Karaipekli, Ali & Sarı, Ahmet, 2008. "Capric–myristic acid/expanded perlite composite as form-stable phase change material for latent heat thermal energy storage," Renewable Energy, Elsevier, vol. 33(12), pages 2599-2605.
- Zhang, P. & Xiao, X. & Ma, Z.W., 2016. "A review of the composite phase change materials: Fabrication, characterization, mathematical modeling and application to performance enhancement," Applied Energy, Elsevier, vol. 165(C), pages 472-510.
- Palacios, Anabel & Cong, Lin & Navarro, M.E. & Ding, Yulong & Barreneche, Camila, 2019. "Thermal conductivity measurement techniques for characterizing thermal energy storage materials – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 32-52.
- Yataganbaba, Alptug & Ozkahraman, Bengi & Kurtbas, Irfan, 2017. "Worldwide trends on encapsulation of phase change materials: A bibliometric analysis (1990–2015)," Applied Energy, Elsevier, vol. 185(P1), pages 720-731.
- Yuan, Yanping & Zhang, Nan & Tao, Wenquan & Cao, Xiaoling & He, Yaling, 2014. "Fatty acids as phase change materials: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 482-498.
- Zhang, G.H. & Zhao, C.Y., 2011. "Thermal and rheological properties of microencapsulated phase change materials," Renewable Energy, Elsevier, vol. 36(11), pages 2959-2966.
- Mohammed, Abubakar Gambo & Elfeky, Karem Elsayed & Wang, Qiuwang, 2022. "Recent advancement and enhanced battery performance using phase change materials based hybrid battery thermal management for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
- Abhishek Anand & Karunesh Kant & Amritanshu Shukla & Chang-Ren Chen & Atul Sharma, 2021. "Thermal Stability and Reliability Test of Some Saturated Fatty Acids for Low and Medium Temperature Thermal Energy Storage," Energies, MDPI, vol. 14(15), pages 1-22, July.
- Nassima Radouane, 2022. "A Comprehensive Review of Composite Phase Change Materials (cPCMs) for Thermal Management Applications, Including Manufacturing Processes, Performance, and Applications," Energies, MDPI, vol. 15(21), pages 1-28, November.
- Cai, Yibing & Wei, Qufu & Huang, Fenglin & Lin, Shiliang & Chen, Fang & Gao, Weidong, 2009. "Thermal stability, latent heat and flame retardant properties of the thermal energy storage phase change materials based on paraffin/high density polyethylene composites," Renewable Energy, Elsevier, vol. 34(10), pages 2117-2123.
- Zhang, Nan & Yuan, Yanping & Du, Yanxia & Cao, Xiaoling & Yuan, Yaguang, 2014. "Preparation and properties of palmitic-stearic acid eutectic mixture/expanded graphite composite as phase change material for energy storage," Energy, Elsevier, vol. 78(C), pages 950-956.
- Qiu, Zhongzhu & Zhao, Xudong & Li, Peng & Zhang, Xingxing & Ali, Samira & Tan, Junyi, 2015. "Theoretical investigation of the energy performance of a novel MPCM (Microencapsulated Phase Change Material) slurry based PV/T module," Energy, Elsevier, vol. 87(C), pages 686-698.
- Karaipekli, Ali & Sarı, Ahmet & Kaygusuz, Kamil, 2007. "Thermal conductivity improvement of stearic acid using expanded graphite and carbon fiber for energy storage applications," Renewable Energy, Elsevier, vol. 32(13), pages 2201-2210.
- Luca Brunelli & Emiliano Borri & Anna Laura Pisello & Andrea Nicolini & Carles Mateu & Luisa F. Cabeza, 2024. "Thermal Energy Storage in Energy Communities: A Perspective Overview through a Bibliometric Analysis," Sustainability, MDPI, vol. 16(14), pages 1-27, July.
- Zhu, Yalin & Qin, Yaosong & Liang, Shuen & Chen, Keping & Tian, Chunrong & Wang, Jianhua & Luo, Xuan & Zhang, Lin, 2019. "Graphene/SiO2/n-octadecane nanoencapsulated phase change material with flower like morphology, high thermal conductivity, and suppressed supercooling," Applied Energy, Elsevier, vol. 250(C), pages 98-108.
- Gunasekara, Saman Nimali & Martin, Viktoria & Chiu, Justin Ningwei, 2017. "Phase equilibrium in the design of phase change materials for thermal energy storage: State-of-the-art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 558-581.
- Islam, Md. Parvez & Morimoto, Tetsuo, 2018. "Advances in low to medium temperature non-concentrating solar thermal technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2066-2093.
- Yu, Jinghua & Leng, Kangxin & Ye, Hong & Xu, Xinhua & Luo, Yongqiang & Wang, Jinbo & Yang, Xie & Yang, Qingchen & Gang, Wenjie, 2020. "Study on thermal insulation characteristics and optimized design of pipe-embedded ventilation roof with outer-layer shape-stabilized PCM in different climate zones," Renewable Energy, Elsevier, vol. 147(P1), pages 1609-1622.
More about this item
Keywords
Phase change material; Thermal energy storage; Passive safety; Ice condensers; Steam condensation; Octadecanoic acid;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:189:y:2019:i:c:s0360544219318328. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.