IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v185y2019icp409-422.html
   My bibliography  Save this article

Integrated design and control of full sorption chiller systems

Author

Listed:
  • Gibelhaus, Andrej
  • Tangkrachang, Thanaphum
  • Bau, Uwe
  • Seiler, Jan
  • Bardow, André

Abstract

Thermally-driven sorption chillers offer a sustainable alternative to compression chillers. However, the expected benefits of sorption chillers are often not realised in practice due to high electricity consumption of auxiliaries, such as pumps and fans. To obtain an overall optimal full sorption chiller system, we propose a method for integrated optimisation of design and control. The proposed method applies dynamic optimisation to identify optimal control for each investigated system design. Thus, each design is evaluated under optimal control regarding a problem-specific objective, such as electrical efficiency or total costs. We illustrate the method for a case study of a solar-thermally-driven adsorption chiller system. The results are compared to an established design method and nominal control: optimising for electricity demand allows to increase the electrical energy efficiency ratio (EER) by one order of magnitude. When optimising for total costs, optimal control increases the energy efficiency by a factor 4 and decreases the total costs by 28% to 0.13 EUR/kWh. Moving to a cost-optimal design further increases the energy efficiency by 50% to 16.2 and reduces the total costs by another 8%. Thus, the proposed method allows for efficient integrated design and control of full sorption chiller systems.

Suggested Citation

  • Gibelhaus, Andrej & Tangkrachang, Thanaphum & Bau, Uwe & Seiler, Jan & Bardow, André, 2019. "Integrated design and control of full sorption chiller systems," Energy, Elsevier, vol. 185(C), pages 409-422.
  • Handle: RePEc:eee:energy:v:185:y:2019:i:c:p:409-422
    DOI: 10.1016/j.energy.2019.06.169
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219313015
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.06.169?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stabat, Pascal & Marchio, Dominique, 2004. "Simplified model for indirect-contact evaporative cooling-tower behaviour," Applied Energy, Elsevier, vol. 78(4), pages 433-451, August.
    2. Hamdy, Mohamed & Askalany, Ahmed A. & Harby, K. & Kora, Nader, 2015. "An overview on adsorption cooling systems powered by waste heat from internal combustion engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1223-1234.
    3. Antoine Dalibard & Daniel Gürlich & Dietrich Schneider & Ursula Eicker, 2016. "Control Optimization of Solar Thermally Driven Chillers," Energies, MDPI, vol. 9(11), pages 1-15, October.
    4. Nienborg, Björn & Dalibard, Antoine & Schnabel, Lena & Eicker, Ursula, 2017. "Approaches for the optimized control of solar thermally driven cooling systems," Applied Energy, Elsevier, vol. 185(P1), pages 732-744.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Jing & Pan, Qaunwen & Zhang, Wei & Liu, Zhiliang & Wang, Ruzhu & Ge, Tianshu, 2022. "Design and experimental study on a hybrid adsorption refrigeration system using desiccant coated heat exchangers for efficient energy utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    2. Olkis, Christopher & AL-Hasni, Shihab & Brandani, Stefano & Vasta, Salvatore & Santori, Giulio, 2021. "Solar powered adsorption desalination for Northern and Southern Europe," Energy, Elsevier, vol. 232(C).
    3. Palomba, V. & Lombardo, W. & Groβe, A. & Herrmann, R. & Nitsch, B. & Strehlow, A. & Bastian, R. & Sapienza, A. & Frazzica, A., 2020. "Evaluation of in-situ coated porous structures for hybrid heat pumps," Energy, Elsevier, vol. 209(C).
    4. Palomba, Valeria & Dino, Giuseppe E. & Frazzica, Andrea, 2020. "Coupling sorption and compression chillers in hybrid cascade layout for efficient exploitation of renewables: Sizing, design and optimization," Renewable Energy, Elsevier, vol. 154(C), pages 11-28.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Björn Nienborg & Marc Mathieu & Alexander Schwärzler & Katharina Conzelmann & Lena Schnabel, 2021. "Model-Based Evaluation of Air-Side Fouling in Closed-Circuit Cooling Towers," Energies, MDPI, vol. 14(3), pages 1-15, January.
    2. Xiaoqing Wei & Nianping Li & Jinqing Peng & Jianlin Cheng & Jinhua Hu & Meng Wang, 2017. "Modeling and Optimization of a CoolingTower-Assisted Heat Pump System," Energies, MDPI, vol. 10(5), pages 1-18, May.
    3. Lu, Yuanshen & Klimenko, Alexander & Russell, Hugh & Dai, Yuchen & Warner, John & Hooman, Kamel, 2018. "A conceptual study on air jet-induced swirling plume for performance improvement of natural draft cooling towers," Applied Energy, Elsevier, vol. 217(C), pages 496-508.
    4. Ahmed, Hossam A. & Megahed, Tamer F. & Mori, Shinsuke & Nada, Sameh & Hassan, Hamdy, 2023. "Novel design of thermo-electric air conditioning system integrated with PV panel for electric vehicles: Performance evaluation," Applied Energy, Elsevier, vol. 349(C).
    5. Gao, Peng & Wei, Xinyu & Wang, Liwei & Zhu, Fangqi, 2022. "Compression-assisted decomposition thermochemical sorption energy storage system for deep engine exhaust waste heat recovery," Energy, Elsevier, vol. 244(PB).
    6. Verde, M. & Harby, K. & de Boer, Robert & Corberán, José M., 2016. "Performance evaluation of a waste-heat driven adsorption system for automotive air-conditioning: Part II - Performance optimization under different real driving conditions," Energy, Elsevier, vol. 115(P1), pages 996-1009.
    7. Yeudiel Garcíadealva & Roberto Best & Víctor Hugo Gómez & Alejandro Vargas & Wilfrido Rivera & José Camilo Jiménez-García, 2021. "A Cascade Proportional Integral Derivative Control for a Plate-Heat-Exchanger-Based Solar Absorption Cooling System," Energies, MDPI, vol. 14(13), pages 1-20, July.
    8. Harby, K., 2017. "Hydrocarbons and their mixtures as alternatives to environmental unfriendly halogenated refrigerants: An updated overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1247-1264.
    9. Shabir, Faizan & Sultan, Muhammad & Miyazaki, Takahiko & Saha, Bidyut B. & Askalany, Ahmed & Ali, Imran & Zhou, Yuguang & Ahmad, Riaz & Shamshiri, Redmond R., 2020. "Recent updates on the adsorption capacities of adsorbent-adsorbate pairs for heat transformation applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    10. Zhou, Yuekuan & Zheng, Siqian & Hensen, Jan L.M., 2024. "Machine learning-based digital district heating/cooling with renewable integrations and advanced low-carbon transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    11. Valeria Palomba & Emiliano Borri & Antonios Charalampidis & Andrea Frazzica & Sotirios Karellas & Luisa F. Cabeza, 2021. "An Innovative Solar-Biomass Energy System to Increase the Share of Renewables in Office Buildings," Energies, MDPI, vol. 14(4), pages 1-25, February.
    12. Kyriakides, Alexios-Spyridon & Papadopoulos, Athanasios I. & Seferlis, Panos & Hassan, Ibrahim, 2020. "Dynamic modelling and control of single, double and triple effect absorption refrigeration cycles," Energy, Elsevier, vol. 210(C).
    13. Cui, Haijiao & Li, Nianping & Peng, Jinqing & Cheng, Jianlin & Li, Shengbing, 2016. "Study on the dynamic and thermal performances of a reversibly used cooling tower with upward spraying," Energy, Elsevier, vol. 96(C), pages 268-277.
    14. Agudelo, Andrés F. & García-Contreras, Reyes & Agudelo, John R. & Armas, Octavio, 2016. "Potential for exhaust gas energy recovery in a diesel passenger car under European driving cycle," Applied Energy, Elsevier, vol. 174(C), pages 201-212.
    15. Ma, Peizheng & Wang, Lin-Shu & Guo, Nianhua, 2014. "Modeling of hydronic radiant cooling of a thermally homeostatic building using a parametric cooling tower," Applied Energy, Elsevier, vol. 127(C), pages 172-181.
    16. Xiaoqing Wei & Nianping Li & Jinqing Peng & Jianlin Cheng & Jinhua Hu & Meng Wang, 2017. "Performance Analyses of Counter-Flow Closed Wet Cooling Towers Based on a Simplified Calculation Method," Energies, MDPI, vol. 10(3), pages 1-15, February.
    17. Alsaman, Ahmed S. & Askalany, Ahmed A. & Harby, K. & Ahmed, Mahmoud S., 2017. "Performance evaluation of a solar-driven adsorption desalination-cooling system," Energy, Elsevier, vol. 128(C), pages 196-207.
    18. Zhu, Sipeng & Zhang, Kun & Deng, Kangyao, 2020. "A review of waste heat recovery from the marine engine with highly efficient bottoming power cycles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    19. Siddique, Muhammad Zeeshan & Badar, Abdul Waheed & Siddiqui, M. Salman & Butt, Fahad Sarfraz & Saleem, Muhammad & Mahmood, Khalid & Fazal, Imran, 2022. "Performance analysis of double effect solar absorption cooling system with different schemes of hot/cold auxiliary integration and parallel-serial arrangement of solar field," Energy, Elsevier, vol. 245(C).
    20. Klinar, K. & Kitanovski, A., 2020. "Thermal control elements for caloric energy conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:185:y:2019:i:c:p:409-422. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.