IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v217y2018icp496-508.html
   My bibliography  Save this article

A conceptual study on air jet-induced swirling plume for performance improvement of natural draft cooling towers

Author

Listed:
  • Lu, Yuanshen
  • Klimenko, Alexander
  • Russell, Hugh
  • Dai, Yuchen
  • Warner, John
  • Hooman, Kamel

Abstract

In thermal power cycles including concentrating solar thermal (CST) plants, natural draft cooling towers (NDCTs) are widely used heat-dumping facilities. One inherent drawback of NDCTs is that their cooling performance can be compromised by changes in ambient conditions, particularly temperature, which inevitably reduces the net power output of the cycles. Current methods resolving this issue are limited in a few options including inlet air pre-cooling, exit air heating, and fan assistance, each with considerable operational or initial cost. To more economically reduce energy efficiency losses of the power cycles due to inefficient cooling, this paper proposes a new concept of swirling plume method for both dry- and wet-type NDCTs. The method is to rotate the plume strongly like a tornado in the tower upper part and above the towers to increase the overall tower updraft capacity (pressure). The swirling plume is induced by high-speed air jets distributed at certain locations using a much smaller flow rate. A numerical investigation on a 20 m-tall dry-type NDCT model has been conducted verifying that this concept increases the airflow and the water temperature drop of the heat exchanger by at least 53.6% and 3.57 °C (39.2%), respectively, under 35 °C ambient temperature. This cooling performance enhancement enables a half megawatt-scale sCO2-based CST power cycle to recover its net power output, by 4.98%, to the level almost same as that at 30 °C ambient temperature. The air jet to create such a swirling plume consumes only 1/7 of the recovered power roughly. Compared with a traditional fan-forced cooler working under exactly the same condition, this concept requires significantly smaller energy in long-term operations as it would run only during temperature extremes. A simplified analytical modelling has found that the cooling tower performance is improved due to that the swirling plume creates an equivalent extra draft height on top of the tower which is attributed to two different vortical effects. The overall angular momentum of the swirl is a critical factor in these effects.

Suggested Citation

  • Lu, Yuanshen & Klimenko, Alexander & Russell, Hugh & Dai, Yuchen & Warner, John & Hooman, Kamel, 2018. "A conceptual study on air jet-induced swirling plume for performance improvement of natural draft cooling towers," Applied Energy, Elsevier, vol. 217(C), pages 496-508.
  • Handle: RePEc:eee:appene:v:217:y:2018:i:c:p:496-508
    DOI: 10.1016/j.apenergy.2018.02.095
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918302204
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.02.095?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stabat, Pascal & Marchio, Dominique, 2004. "Simplified model for indirect-contact evaporative cooling-tower behaviour," Applied Energy, Elsevier, vol. 78(4), pages 433-451, August.
    2. Li, Xiaoxiao & Duniam, Sam & Gurgenci, Hal & Guan, Zhiqiang & Veeraragavan, Anand, 2017. "Full scale experimental study of a small natural draft dry cooling tower for concentrating solar thermal power plant," Applied Energy, Elsevier, vol. 193(C), pages 15-27.
    3. Zhao, Yuanbin & Sun, Fengzhong & Li, Yan & Long, Guoqing & Yang, Zhi, 2015. "Numerical study on the cooling performance of natural draft dry cooling tower with vertical delta radiators under constant heat load," Applied Energy, Elsevier, vol. 149(C), pages 225-237.
    4. Li, Xiaoxiao & Gurgenci, Hal & Guan, Zhiqiang & Wang, Xurong & Duniam, Sam, 2017. "Measurements of crosswind influence on a natural draft dry cooling tower for a solar thermal power plant," Applied Energy, Elsevier, vol. 206(C), pages 1169-1183.
    5. Wang, Weiliang & Zhang, Hai & Liu, Pei & Li, Zheng & Lv, Junfu & Ni, Weidou, 2017. "The cooling performance of a natural draft dry cooling tower under crosswind and an enclosure approach to cooling efficiency enhancement," Applied Energy, Elsevier, vol. 186(P3), pages 336-346.
    6. Deng, Huifang & Boehm, Robert F., 2011. "An estimation of the performance limits and improvement of dry cooling on trough solar thermal plants," Applied Energy, Elsevier, vol. 88(1), pages 216-223, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Jianhang & Qu, Zhiguo & Zhang, Jianfei & Hu, Sanji & Song, Jialiang & Chen, Yongdong, 2022. "A comprehensive energy efficiency assessment indicator and grading criteria for natural draft wet cooling towers," Energy, Elsevier, vol. 254(PB).
    2. Yan, Weichao & Cui, Xin & Meng, Xiangzhao & Yang, Chuanjun & Zhang, Yu & Liu, Yilin & An, Hui & Jin, Liwen, 2024. "Multi-objective optimization of hollow fiber membrane-based water cooler for enhanced cooling performance and energy efficiency," Renewable Energy, Elsevier, vol. 222(C).
    3. Mohan Liu & Lei Chen & Kaijun Jiang & Xiaohui Zhou & Zongyang Zhang & Hanyu Zhou & Weijia Wang & Lijun Yang & Yuguang Niu, 2021. "Investigation of Thermo-Flow Characteristics of Natural Draft Dry Cooling Systems Designed with Only One Tower in 2 × 660 MW Power Plants," Energies, MDPI, vol. 14(5), pages 1-18, February.
    4. Xuchen Fan & Xiaofeng Lu & Jiping Wang & Zilong Li & Quanhai Wang & Zhonghao Dong & Rongdi Zhang, 2021. "Performance Evaluation of a Maisotsenko Cycle Cooling Tower with Uneven Length of Dry and Wet Channels in Hot and Humid Conditions," Energies, MDPI, vol. 14(24), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tarun Kumar Aseri & Chandan Sharma & Tara C. Kandpal, 2022. "Condenser cooling technologies for concentrating solar power plants: a review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 4511-4565, April.
    2. Li, Xiaoxiao & Gurgenci, Hal & Guan, Zhiqiang & Wang, Xurong & Duniam, Sam, 2017. "Measurements of crosswind influence on a natural draft dry cooling tower for a solar thermal power plant," Applied Energy, Elsevier, vol. 206(C), pages 1169-1183.
    3. Kong, Yanqiang & Wang, Weijia & Yang, Lijun & Du, Xiaoze, 2020. "Energy efficient strategies for anti-freezing of air-cooled heat exchanger," Applied Energy, Elsevier, vol. 261(C).
    4. Sun, Yubiao & Guan, Zhiqiang & Gurgenci, Hal & Wang, Jianyong & Dong, Peixin & Hooman, Kamel, 2019. "Spray cooling system design and optimization for cooling performance enhancement of natural draft dry cooling tower in concentrated solar power plants," Energy, Elsevier, vol. 168(C), pages 273-284.
    5. Wu, Tao & Ge, Zhihua & Yang, Lijun & Du, Xiaoze, 2019. "Modeling the performance of the indirect dry cooling system in a thermal power generating unit under variable ambient conditions," Energy, Elsevier, vol. 169(C), pages 625-636.
    6. Huiqian Guo & Yue Yang & Tongrui Cheng & Hanyu Zhou & Weijia Wang & Xiaoze Du, 2021. "Tower Configuration Impacts on the Thermal and Flow Performance of Steel-Truss Natural Draft Dry Cooling System," Energies, MDPI, vol. 14(7), pages 1-17, April.
    7. Boukelia, T.E. & Bouraoui, A. & Laouafi, A. & Djimli, S. & Kabar, Y., 2020. "3E (Energy-Exergy-Economic) comparative study of integrating wet and dry cooling systems in solar tower power plants," Energy, Elsevier, vol. 200(C).
    8. Weijia Wang & Lei Chen & Xianwei Huang & Lijun Yang & Xiaoze Du, 2017. "Performance Recovery of Natural Draft Dry Cooling Systems by Combined Air Leading Strategies," Energies, MDPI, vol. 10(12), pages 1-18, December.
    9. Zhao Li & Huimin Wei & Tao Wu & Xiaoze Du, 2021. "Optimization for Circulating Cooling Water Distribution of Indirect Dry Cooling System in a Thermal Power Plant under Crosswind Condition with Evolution Strategies Algorithm," Energies, MDPI, vol. 14(4), pages 1-17, February.
    10. Wang, Xurong & Li, Xiaoxiao & Li, Qibin & Liu, Lang & Liu, Chao, 2020. "Performance of a solar thermal power plant with direct air-cooled supercritical carbon dioxide Brayton cycle under off-design conditions," Applied Energy, Elsevier, vol. 261(C).
    11. Mohan Liu & Lei Chen & Kaijun Jiang & Xiaohui Zhou & Zongyang Zhang & Hanyu Zhou & Weijia Wang & Lijun Yang & Yuguang Niu, 2021. "Investigation of Thermo-Flow Characteristics of Natural Draft Dry Cooling Systems Designed with Only One Tower in 2 × 660 MW Power Plants," Energies, MDPI, vol. 14(5), pages 1-18, February.
    12. Yanqiang Kong & Weijia Wang & Zhitao Zuo & Lijun Yang & Xiaoze Du & Chao Xu & Yongping Yang, 2019. "Influencing Mechanisms of a Crosswind on the Thermo-Hydraulic Characteristics of a Large-Scale Air-Cooled Heat Exchanger," Energies, MDPI, vol. 12(6), pages 1-29, March.
    13. Xiaoqing Wei & Nianping Li & Jinqing Peng & Jianlin Cheng & Jinhua Hu & Meng Wang, 2017. "Modeling and Optimization of a CoolingTower-Assisted Heat Pump System," Energies, MDPI, vol. 10(5), pages 1-18, May.
    14. Hu, Hemin & Li, Zhigang & Jiang, Yuyan & Du, Xiaoze, 2018. "Thermodynamic characteristics of thermal power plant with hybrid (dry/wet) cooling system," Energy, Elsevier, vol. 147(C), pages 729-741.
    15. Li, Xiaoxiao & Duniam, Sam & Gurgenci, Hal & Guan, Zhiqiang & Veeraragavan, Anand, 2017. "Full scale experimental study of a small natural draft dry cooling tower for concentrating solar thermal power plant," Applied Energy, Elsevier, vol. 193(C), pages 15-27.
    16. Peikun Zhang & Bingfa Guo & Li Wang, 2023. "An Experimental Study on the Heat and Mass Transfer Characteristics of an Evaporative Cooler," Energies, MDPI, vol. 16(21), pages 1-15, October.
    17. Moore, J. & Grimes, R. & Walsh, E. & O'Donovan, A., 2014. "Modelling the thermodynamic performance of a concentrated solar power plant with a novel modular air-cooled condenser," Energy, Elsevier, vol. 69(C), pages 378-391.
    18. Zhang, Lige & Spatari, Sabrina & Sun, Ying, 2020. "Life cycle assessment of novel heat exchanger for dry cooling of power plants based on encapsulated phase change materials," Applied Energy, Elsevier, vol. 271(C).
    19. Bagnato, Giuseppe & Boulet, Florent & Sanna, Aimaro, 2019. "Effect of Li-LSX zeolite, NiCe/Al2O3 and NiCe/ZrO2 on the production of drop-in bio-fuels by pyrolysis and hydrotreating of Nannochloropsis and isochrysis microalgae," Energy, Elsevier, vol. 179(C), pages 199-213.
    20. Liu, Hua & Wu, Zhiyong & Zhang, Bingjian & Chen, Qinglin & Pan, Ming & Ren, Jingzheng & He, Chang, 2023. "A large-scale stochastic simulation-based thermodynamic optimization for the hybrid closed circuit cooling tower system with parallel computing," Energy, Elsevier, vol. 283(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:217:y:2018:i:c:p:496-508. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.