IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i12p9234-d1165948.html
   My bibliography  Save this article

Advanced Intelligent Approach for Solar PV Power Forecasting Using Meteorological Parameters for Qassim Region, Saudi Arabia

Author

Listed:
  • Muhannad Alaraj

    (Department of Electrical Engineering, College of Engineering, Qassim University, Buraydah 52571, Saudi Arabia)

  • Ibrahim Alsaidan

    (Department of Electrical Engineering, College of Engineering, Qassim University, Buraydah 52571, Saudi Arabia)

  • Astitva Kumar

    (Department of Electrical Engineering, Netaji Subhas University of Technology, Delhi 110078, India)

  • Mohammad Rizwan

    (Department of Electrical Engineering, Delhi Technological University, Delhi 110042, India)

  • Majid Jamil

    (Department of Electrical Engineering, Jamia Millia Islamia, Delhi 110025, India)

Abstract

Solar photovoltaic (SPV) power penetration in dispersed generation systems is constantly rising. Due to the elevated SPV penetration causing a lot of problems to power system stability, sustainability, reliable electricity production, and power quality, it is critical to forecast SPV power using climatic parameters. The suggested model is built with meteorological conditions as input parameters, and the effects of such variables on predicted SPV power have been studied. The primary goal of this study is to examine the effectiveness of optimization-based SPV power forecasting models based on meteorological conditions using the novel salp swarm algorithm due to its excellent ability for exploration and exploitation. To forecast SPV power, a recently designed approach that is based on the salp swarm algorithm (SSA) is used. The performance of the suggested optimization model is estimated in terms of statistical parameters which include Root Mean Square Error (RMSE), Mean Square Error (MSE), and Training Time (TT). To test the reliability and validity, the proposed algorithm is compared to grey wolf optimization (GWO) and the Levenberg–Marquardt-based artificial neural network algorithm. The values of RMSE and MSE obtained using the proposed SSA algorithm come out as 1.45% and 2.12% which are lesser when compared with other algorithms. Likewise, the TT for SSA is 12.46 s which is less than that of GWO by 8.15 s. The proposed model outperforms other intelligent techniques in terms of performance and robustness. The suggested method is applicable for load management operations in a microgrid environment. Moreover, the proposed study may serve as a road map for the Saudi government’s Vision 2030.

Suggested Citation

  • Muhannad Alaraj & Ibrahim Alsaidan & Astitva Kumar & Mohammad Rizwan & Majid Jamil, 2023. "Advanced Intelligent Approach for Solar PV Power Forecasting Using Meteorological Parameters for Qassim Region, Saudi Arabia," Sustainability, MDPI, vol. 15(12), pages 1-16, June.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:12:p:9234-:d:1165948
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/12/9234/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/12/9234/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hosenuzzaman, M. & Rahim, N.A. & Selvaraj, J. & Hasanuzzaman, M. & Malek, A.B.M.A. & Nahar, A., 2015. "Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 284-297.
    2. Vishnu Suresh & Przemyslaw Janik & Jacek Rezmer & Zbigniew Leonowicz, 2020. "Forecasting Solar PV Output Using Convolutional Neural Networks with a Sliding Window Algorithm," Energies, MDPI, vol. 13(3), pages 1-15, February.
    3. Voyant, Cyril & Notton, Gilles & Kalogirou, Soteris & Nivet, Marie-Laure & Paoli, Christophe & Motte, Fabrice & Fouilloy, Alexis, 2017. "Machine learning methods for solar radiation forecasting: A review," Renewable Energy, Elsevier, vol. 105(C), pages 569-582.
    4. Chaudhary, Priyanka & Rizwan, M., 2018. "Energy management supporting high penetration of solar photovoltaic generation for smart grid using solar forecasts and pumped hydro storage system," Renewable Energy, Elsevier, vol. 118(C), pages 928-946.
    5. Amrouche, Badia & Le Pivert, Xavier, 2014. "Artificial neural network based daily local forecasting for global solar radiation," Applied Energy, Elsevier, vol. 130(C), pages 333-341.
    6. Monfared, Houman Jamshidi & Ghasemi, Ahmad & Loni, Abdolah & Marzband, Mousa, 2019. "A hybrid price-based demand response program for the residential micro-grid," Energy, Elsevier, vol. 185(C), pages 274-285.
    7. Shang, Chuanfu & Wei, Pengcheng, 2018. "Enhanced support vector regression based forecast engine to predict solar power output," Renewable Energy, Elsevier, vol. 127(C), pages 269-283.
    8. Happy Aprillia & Hong-Tzer Yang & Chao-Ming Huang, 2020. "Short-Term Photovoltaic Power Forecasting Using a Convolutional Neural Network–Salp Swarm Algorithm," Energies, MDPI, vol. 13(8), pages 1-20, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Neethu Elizabeth Michael & Manohar Mishra & Shazia Hasan & Ahmed Al-Durra, 2022. "Short-Term Solar Power Predicting Model Based on Multi-Step CNN Stacked LSTM Technique," Energies, MDPI, vol. 15(6), pages 1-20, March.
    2. Elham Alzain & Shaha Al-Otaibi & Theyazn H. H. Aldhyani & Ali Saleh Alshebami & Mohammed Amin Almaiah & Mukti E. Jadhav, 2023. "Revolutionizing Solar Power Production with Artificial Intelligence: A Sustainable Predictive Model," Sustainability, MDPI, vol. 15(10), pages 1-21, May.
    3. Zheng, Jianqin & Zhang, Haoran & Dai, Yuanhao & Wang, Bohong & Zheng, Taicheng & Liao, Qi & Liang, Yongtu & Zhang, Fengwei & Song, Xuan, 2020. "Time series prediction for output of multi-region solar power plants," Applied Energy, Elsevier, vol. 257(C).
    4. Victor Hugo Wentz & Joylan Nunes Maciel & Jorge Javier Gimenez Ledesma & Oswaldo Hideo Ando Junior, 2022. "Solar Irradiance Forecasting to Short-Term PV Power: Accuracy Comparison of ANN and LSTM Models," Energies, MDPI, vol. 15(7), pages 1-23, March.
    5. Despotovic, Milan & Voyant, Cyril & Garcia-Gutierrez, Luis & Almorox, Javier & Notton, Gilles, 2024. "Solar irradiance time series forecasting using auto-regressive and extreme learning methods: Influence of transfer learning and clustering," Applied Energy, Elsevier, vol. 365(C).
    6. Md Mijanur Rahman & Mohammad Shakeri & Sieh Kiong Tiong & Fatema Khatun & Nowshad Amin & Jagadeesh Pasupuleti & Mohammad Kamrul Hasan, 2021. "Prospective Methodologies in Hybrid Renewable Energy Systems for Energy Prediction Using Artificial Neural Networks," Sustainability, MDPI, vol. 13(4), pages 1-28, February.
    7. Samu, Remember & Calais, Martina & Shafiullah, G.M. & Moghbel, Moayed & Shoeb, Md Asaduzzaman & Nouri, Bijan & Blum, Niklas, 2021. "Applications for solar irradiance nowcasting in the control of microgrids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    8. Shab Gbémou & Julien Eynard & Stéphane Thil & Emmanuel Guillot & Stéphane Grieu, 2021. "A Comparative Study of Machine Learning-Based Methods for Global Horizontal Irradiance Forecasting," Energies, MDPI, vol. 14(11), pages 1-23, May.
    9. Aslam, Sheraz & Herodotou, Herodotos & Mohsin, Syed Muhammad & Javaid, Nadeem & Ashraf, Nouman & Aslam, Shahzad, 2021. "A survey on deep learning methods for power load and renewable energy forecasting in smart microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    10. Seul-Gi Kim & Jae-Yoon Jung & Min Kyu Sim, 2019. "A Two-Step Approach to Solar Power Generation Prediction Based on Weather Data Using Machine Learning," Sustainability, MDPI, vol. 11(5), pages 1-16, March.
    11. Hassan, Muhammed A. & Khalil, A. & Kaseb, S. & Kassem, M.A., 2017. "Exploring the potential of tree-based ensemble methods in solar radiation modeling," Applied Energy, Elsevier, vol. 203(C), pages 897-916.
    12. Llinet Benavides Cesar & Rodrigo Amaro e Silva & Miguel Ángel Manso Callejo & Calimanut-Ionut Cira, 2022. "Review on Spatio-Temporal Solar Forecasting Methods Driven by In Situ Measurements or Their Combination with Satellite and Numerical Weather Prediction (NWP) Estimates," Energies, MDPI, vol. 15(12), pages 1-23, June.
    13. Munir Husein & Il-Yop Chung, 2019. "Day-Ahead Solar Irradiance Forecasting for Microgrids Using a Long Short-Term Memory Recurrent Neural Network: A Deep Learning Approach," Energies, MDPI, vol. 12(10), pages 1-21, May.
    14. Gao, Bixuan & Huang, Xiaoqiao & Shi, Junsheng & Tai, Yonghang & Zhang, Jun, 2020. "Hourly forecasting of solar irradiance based on CEEMDAN and multi-strategy CNN-LSTM neural networks," Renewable Energy, Elsevier, vol. 162(C), pages 1665-1683.
    15. Rial A. Rajagukguk & Raden A. A. Ramadhan & Hyun-Jin Lee, 2020. "A Review on Deep Learning Models for Forecasting Time Series Data of Solar Irradiance and Photovoltaic Power," Energies, MDPI, vol. 13(24), pages 1-23, December.
    16. Abbas, Sajid & Yuan, Yanping & Zhou, Jinzhi & Hassan, Atazaz & Yu, Min & Yasheng, Ji, 2022. "Experimental and analytical analysis of the impact of different base plate materials and design parameters on the performance of the photovoltaic/thermal system," Renewable Energy, Elsevier, vol. 187(C), pages 522-536.
    17. Mollik, Sazib & Rashid, M.M. & Hasanuzzaman, M. & Karim, M.E. & Hosenuzzaman, M., 2016. "Prospects, progress, policies, and effects of rural electrification in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 553-567.
    18. Voyant, Cyril & Motte, Fabrice & Notton, Gilles & Fouilloy, Alexis & Nivet, Marie-Laure & Duchaud, Jean-Laurent, 2018. "Prediction intervals for global solar irradiation forecasting using regression trees methods," Renewable Energy, Elsevier, vol. 126(C), pages 332-340.
    19. Trigo-González, Mauricio & Batlles, F.J. & Alonso-Montesinos, Joaquín & Ferrada, Pablo & del Sagrado, J. & Martínez-Durbán, M. & Cortés, Marcelo & Portillo, Carlos & Marzo, Aitor, 2019. "Hourly PV production estimation by means of an exportable multiple linear regression model," Renewable Energy, Elsevier, vol. 135(C), pages 303-312.
    20. Pedro, Hugo T.C. & Lim, Edwin & Coimbra, Carlos F.M., 2018. "A database infrastructure to implement real-time solar and wind power generation intra-hour forecasts," Renewable Energy, Elsevier, vol. 123(C), pages 513-525.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:12:p:9234-:d:1165948. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.