IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v48y2012icp424-435.html
   My bibliography  Save this article

Thermoeconomic assessment of a sustainable municipal wastewater treatment system

Author

Listed:
  • Abusoglu, Aysegul
  • Demir, Sinan
  • Kanoglu, Mehmet

Abstract

This paper presents the thermoeconomic analysis and assessment of a municipal wastewater treatment system. Operation of an existing municipal wastewater treatment plant is described in detail and a thermoeconomical methodology based on exergoeconomic relations and the specific exergy costing (SPECO) method is provided to allocate cost flows through subcomponents of the plant. SPECO method is based on a step by step procedure which begins from identification of energy and exergy values of all states defined in the present system through fuel (F) and product (P) approach and ends at the point of establishing related exergy based cost balance equations together with auxiliary equations. The system treats nearly 222,000 m3 domestic wastewater per day by using the primary and secondary treatment systems. Activated sludge is digested in the anaerobic digestion reactors to produce biogas with a 60% methane content. For each 1 m3 biogas produced in the wastewater treatment plant, 68.26 kg of sludge with the dry matter content of 5.0% is digested. The de-watered digested sludge with the dry matter content of 22% is considered as a waste and used for agricultural land applications, currently. The actual exergetic efficiency of the wastewater treatment plant is determined to be 34% which indicates that 66% of the total exergy input to the plant, mainly by sewage and power consumptions, is destroyed. The exergetic cost rate and the specific unit exergetic cost of the treated wastewater at the exit of the WWTP are found to be 62.05 $/h and 3.804 ¢/m3, respectively. The corresponding costs are 81.90 $/h and 1.907 ¢/m3 for digested sludge at the exit of secondary anaerobic digestion reactor and de-watering unit; and 175.9 $/h and 13.48 ¢/m3 for the biogas produced at the exit of primary and secondary anaerobic digestion reactors, respectively.

Suggested Citation

  • Abusoglu, Aysegul & Demir, Sinan & Kanoglu, Mehmet, 2012. "Thermoeconomic assessment of a sustainable municipal wastewater treatment system," Renewable Energy, Elsevier, vol. 48(C), pages 424-435.
  • Handle: RePEc:eee:renene:v:48:y:2012:i:c:p:424-435
    DOI: 10.1016/j.renene.2012.06.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148112003552
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2012.06.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lazzaretto, Andrea & Tsatsaronis, George, 2006. "SPECO: A systematic and general methodology for calculating efficiencies and costs in thermal systems," Energy, Elsevier, vol. 31(8), pages 1257-1289.
    2. Abusoglu, Aysegul & Kanoglu, Mehmet, 2009. "Exergoeconomic analysis and optimization of combined heat and power production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2295-2308, December.
    3. Fytili, D. & Zabaniotou, A., 2008. "Utilization of sewage sludge in EU application of old and new methods--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 116-140, January.
    4. Raschid-Sally, Liqa & Jayakody, Priyantha, 2008. "Drivers and characteristics of wastewater agriculture in developing countries: results from a global assessment," IWMI Research Reports H041686, International Water Management Institute.
    5. Lamas, Wendell de Queiroz & Silveira, Jose Luz & Oscare Giacaglia, Giorgio Eugenio & Mattos dos Reis, Luiz Octavio, 2010. "Thermoeconomic analysis applied to an alternative wastewater treatment," Renewable Energy, Elsevier, vol. 35(10), pages 2288-2296.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, XiaoHong & Wei, Ye & Li, Min & Deng, ShiHuai & Wu, Jun & Zhang, YanZong & Xiao, Hong, 2014. "Emergy evaluation of an integrated livestock wastewater treatment system," Resources, Conservation & Recycling, Elsevier, vol. 92(C), pages 95-107.
    2. Mustafa Erguvan & David W. MacPhee, 2021. "Can a Wastewater Treatment Plant Power Itself? Results from a Novel Biokinetic-Thermodynamic Analysis," J, MDPI, vol. 4(4), pages 1-24, October.
    3. Colmenar-Santos, Antonio & Zarzuelo-Puch, Gloria & Borge-Diez, David & García-Diéguez, Concepción, 2016. "Thermodynamic and exergoeconomic analysis of energy recovery system of biogas from a wastewater treatment plant and use in a Stirling engine," Renewable Energy, Elsevier, vol. 88(C), pages 171-184.
    4. Zare, A. Darabadi & Saray, R. Khoshbakhti & Mirmasoumi, S. & Bahlouli, K., 2019. "Optimization strategies for mixing ratio of biogas and natural gas co-firing in a cogeneration of heat and power cycle," Energy, Elsevier, vol. 181(C), pages 635-644.
    5. Mancini, G. & Luciano, A. & Bolzonella, D. & Fatone, F. & Viotti, P. & Fino, D., 2021. "A water-waste-energy nexus approach to bridge the sustainability gap in landfill-based waste management regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    6. Alkan, Mehmet Ali & Keçebaş, Ali & Yamankaradeniz, Nurettin, 2013. "Exergoeconomic analysis of a district heating system for geothermal energy using specific exergy cost method," Energy, Elsevier, vol. 60(C), pages 426-434.
    7. Güngör, Osman & Tozlu, Alperen & Arslantürk, Cihat & Özahi, Emrah, 2024. "District heating based on exhaust gas produced from end-of-life tires in Erzincan: Thermoeconomic analysis and optimization," Energy, Elsevier, vol. 294(C).
    8. Yan, Peng & Shi, Hong-Xin & Chen, You-Peng & Gao, Xu & Fang, Fang & Guo, Jin-Song, 2020. "Optimization of recovery and utilization pathway of chemical energy from wastewater pollutants by a net-zero energy wastewater treatment model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gürtürk, Mert & Oztop, Hakan F. & Hepbasli, Arif, 2015. "Comparison of exergoeconomic analysis of two different perlite expansion furnaces," Energy, Elsevier, vol. 80(C), pages 589-598.
    2. Oyekale, Joseph & Petrollese, Mario & Cau, Giorgio, 2020. "Modified auxiliary exergy costing in advanced exergoeconomic analysis applied to a hybrid solar-biomass organic Rankine cycle plant," Applied Energy, Elsevier, vol. 268(C).
    3. Mohammadkhani, F. & Shokati, N. & Mahmoudi, S.M.S. & Yari, M. & Rosen, M.A., 2014. "Exergoeconomic assessment and parametric study of a Gas Turbine-Modular Helium Reactor combined with two Organic Rankine Cycles," Energy, Elsevier, vol. 65(C), pages 533-543.
    4. Kanoglu, Mehmet & Ayanoglu, Abdulkadir & Abusoglu, Aysegul, 2011. "Exergoeconomic assessment of a geothermal assisted high temperature steam electrolysis system," Energy, Elsevier, vol. 36(7), pages 4422-4433.
    5. Wei, Zhiqiang & Zhang, Bingjian & Wu, Shengyuan & Chen, Qinglin & Tsatsaronis, George, 2012. "Energy-use analysis and evaluation of distillation systems through avoidable exergy destruction and investment costs," Energy, Elsevier, vol. 42(1), pages 424-433.
    6. Adriano da S. Marques & Monica Carvalho & Álvaro A. V. Ochoa & Ronelly J. Souza & Carlos A. C. dos Santos, 2020. "Exergoeconomic Assessment of a Compact Electricity-Cooling Cogeneration Unit," Energies, MDPI, vol. 13(20), pages 1-18, October.
    7. Wang, Jiangjiang & Mao, Tianzhi & Wu, Jing, 2017. "Modified exergoeconomic modeling and analysis of combined cooling heating and power system integrated with biomass-steam gasification," Energy, Elsevier, vol. 139(C), pages 871-882.
    8. Banerjee, Avishek & Tierney, Michael. J. & Thorpe, Roger. N., 2012. "Thermoeconomics, cost benefit analysis, and a novel way of dealing with revenue generating dissipative units applied to candidate decentralised energy systems for Indian rural villages," Energy, Elsevier, vol. 43(1), pages 477-488.
    9. Wang, Jiangjiang & Li, Meng & Ren, Fukang & Li, Xiaojing & Liu, Boxiang, 2018. "Modified exergoeconomic analysis method based on energy level with reliability consideration: Cost allocations in a biomass trigeneration system," Renewable Energy, Elsevier, vol. 123(C), pages 104-116.
    10. Fan, Guangli & Ahmadi, A. & Ehyaei, M.A. & Das, Biplab, 2021. "Energy, exergy, economic and exergoenvironmental analyses of polygeneration system integrated gas cycle, absorption chiller, and Copper-Chlorine thermochemical cycle to produce power, cooling, and hyd," Energy, Elsevier, vol. 222(C).
    11. Naser Shokati & Farzad Mohammadkhani & Mortaza Yari & Seyed M. S. Mahmoudi & Marc A. Rosen, 2014. "A Comparative Exergoeconomic Analysis of Waste Heat Recovery from a Gas Turbine-Modular Helium Reactor via Organic Rankine Cycles," Sustainability, MDPI, vol. 6(5), pages 1-16, April.
    12. Samaké, Oumar & Galanis, Nicolas & Sorin, Mikhail, 2018. "Thermo-economic analysis of a multiple-effect desalination system with ejector vapour compression," Energy, Elsevier, vol. 144(C), pages 1037-1051.
    13. Han, Zepeng & Wang, Jiangjiang & Cui, Zhiheng & Lu, Chunyan & Qi, Xiaoling, 2021. "Multi-objective optimization and exergoeconomic analysis for a novel full-spectrum solar-assisted methanol combined cooling, heating, and power system," Energy, Elsevier, vol. 237(C).
    14. Shokati, Naser & Ranjbar, Faramarz & Yari, Mortaza, 2015. "Exergoeconomic analysis and optimization of basic, dual-pressure and dual-fluid ORCs and Kalina geothermal power plants: A comparative study," Renewable Energy, Elsevier, vol. 83(C), pages 527-542.
    15. Alkan, Mehmet Ali & Keçebaş, Ali & Yamankaradeniz, Nurettin, 2013. "Exergoeconomic analysis of a district heating system for geothermal energy using specific exergy cost method," Energy, Elsevier, vol. 60(C), pages 426-434.
    16. Zhao, Yajing & Wang, Jiangfeng & Cao, Liyan & Wang, Yu, 2016. "Comprehensive analysis and parametric optimization of a CCP (combined cooling and power) system driven by geothermal source," Energy, Elsevier, vol. 97(C), pages 470-487.
    17. Lara, Yolanda & Petrakopoulou, Fontina & Morosuk, Tatiana & Boyano, Alicia & Tsatsaronis, George, 2017. "An exergy-based study on the relationship between costs and environmental impacts in power plants," Energy, Elsevier, vol. 138(C), pages 920-928.
    18. Shahin Shamsi & Mohammad R. Omidkhah, 2012. "Optimization of Steam Pressure Levels in a Total Site Using a Thermoeconomic Method," Energies, MDPI, vol. 5(3), pages 1-16, March.
    19. Sadeghi, Mohsen & Chitsaz, Ata & Mahmoudi, S.M.S. & Rosen, Marc A., 2015. "Thermoeconomic optimization using an evolutionary algorithm of a trigeneration system driven by a solid oxide fuel cell," Energy, Elsevier, vol. 89(C), pages 191-204.
    20. Colmenar-Santos, Antonio & Zarzuelo-Puch, Gloria & Borge-Diez, David & García-Diéguez, Concepción, 2016. "Thermodynamic and exergoeconomic analysis of energy recovery system of biogas from a wastewater treatment plant and use in a Stirling engine," Renewable Energy, Elsevier, vol. 88(C), pages 171-184.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:48:y:2012:i:c:p:424-435. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.