LNG boil-off gas reliquefaction by Brayton refrigeration system – Part 2: Improvements over basic configuration
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2019.04.033
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Kwak, Dong-Hun & Heo, Jeong-Ho & Park, Seung-Ha & Seo, Seok-Jang & Kim, Jin-Kuk, 2018. "Energy-efficient design and optimization of boil-off gas (BOG) re-liquefaction process for liquefied natural gas (LNG)-fuelled ship," Energy, Elsevier, vol. 148(C), pages 915-929.
- Kochunni, Sarun Kumar & Chowdhury, Kanchan, 2019. "LNG boil-off gas reliquefaction by Brayton refrigeration system – Part 1: Exergy analysis and design of the basic configuration," Energy, Elsevier, vol. 176(C), pages 753-764.
- Shin, Younggy & Lee, Yoon Pyo, 2009. "Design of a boil-off natural gas reliquefaction control system for LNG carriers," Applied Energy, Elsevier, vol. 86(1), pages 37-44, January.
- Thomas, Rijo Jacob & Ghosh, Parthasarathi & Chowdhury, Kanchan, 2012. "Application of exergy analysis in designing helium liquefiers," Energy, Elsevier, vol. 37(1), pages 207-219.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Keuntae Lee & Deuk-Yong Koh & Junseok Ko & Hankil Yeom & Chang-Hyo Son & Jung-In Yoon, 2020. "Design and Performance Test of 2 kW Class Reverse Brayton Cryogenic System," Energies, MDPI, vol. 13(19), pages 1-13, September.
- Cao, Xuewen & Yang, Jian & Zhang, Yue & Gao, Song & Bian, Jiang, 2022. "Process optimization, exergy and economic analysis of boil-off gas re-liquefaction processes for LNG carriers," Energy, Elsevier, vol. 242(C).
- Jin, Chunhe & Lim, Youngsub & Xu, Xin, 2023. "Performance analysis of a boil-off gas re-liquefaction process for LNG carriers," Energy, Elsevier, vol. 278(C).
- Tomasz Banaszkiewicz & Maciej Chorowski & Wojciech Gizicki & Artur Jedrusyna & Jakub Kielar & Ziemowit Malecha & Agnieszka Piotrowska & Jaroslaw Polinski & Zbigniew Rogala & Korneliusz Sierpowski & Ja, 2020. "Liquefied Natural Gas in Mobile Applications—Opportunities and Challenges," Energies, MDPI, vol. 13(21), pages 1-35, October.
- Yin, Liang & Ju, Yonglin, 2020. "Design and analysis of a process for directly Re-liquefying BOG using subcooled LNG for LNG carrier," Energy, Elsevier, vol. 199(C).
- Wang, Chenghong & Sun, Daming & Shen, Qie & Duan, Yuanyuan & Huang, Xiaoxue, 2024. "A re-liquefaction process of LNG boil-off gas using an improved Kapitsa cycle: Eliminating the BOG compressor," Energy, Elsevier, vol. 304(C).
- Kochunni, Sarun Kumar & Chowdhury, Kanchan, 2020. "Use of dual pressure Claude liquefaction cycles for complete and energy-efficient reliquefaction of boil-off gas in LNG carrier ships," Energy, Elsevier, vol. 198(C).
- Son, Hyunsoo & Kim, Jin-Kuk, 2020. "Energy-efficient process design and optimization of dual-expansion systems for BOG (Boil-off gas) Re-liquefaction process in LNG-fueled ship," Energy, Elsevier, vol. 203(C).
- Yin, Liang & Ju, Yonglin, 2022. "Review on the design and optimization of BOG re-liquefaction process in LNG ship," Energy, Elsevier, vol. 244(PB).
- Yin, Liang & Ju, Yonglin, 2020. "Conceptual design and analysis of a novel process for BOG re-liquefaction combined with absorption refrigeration cycle," Energy, Elsevier, vol. 205(C).
- Bian, Jiang & Yang, Jian & Liu, Yang & Li, Yuxing & Cao, Xuewen, 2022. "Analysis and efficiency enhancement for energy-saving re-liquefaction processes of boil-off gas without external refrigeration cycle on LNG carriers," Energy, Elsevier, vol. 239(PB).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kochunni, Sarun Kumar & Chowdhury, Kanchan, 2020. "Use of dual pressure Claude liquefaction cycles for complete and energy-efficient reliquefaction of boil-off gas in LNG carrier ships," Energy, Elsevier, vol. 198(C).
- Yin, Liang & Ju, Yonglin, 2020. "Conceptual design and analysis of a novel process for BOG re-liquefaction combined with absorption refrigeration cycle," Energy, Elsevier, vol. 205(C).
- Cao, Xuewen & Yang, Jian & Zhang, Yue & Gao, Song & Bian, Jiang, 2022. "Process optimization, exergy and economic analysis of boil-off gas re-liquefaction processes for LNG carriers," Energy, Elsevier, vol. 242(C).
- Wang, Chenghong & Sun, Daming & Shen, Qie & Duan, Yuanyuan & Huang, Xiaoxue, 2024. "A re-liquefaction process of LNG boil-off gas using an improved Kapitsa cycle: Eliminating the BOG compressor," Energy, Elsevier, vol. 304(C).
- Yin, Liang & Ju, Yonglin, 2022. "Review on the design and optimization of BOG re-liquefaction process in LNG ship," Energy, Elsevier, vol. 244(PB).
- Sun, Daming & Wang, Chenghong & Shen, Qie, 2024. "A compression-free re-liquefication process of LNG boil-off gas using LNG cold energy," Energy, Elsevier, vol. 294(C).
- Kochunni, Sarun Kumar & Chowdhury, Kanchan, 2019. "LNG boil-off gas reliquefaction by Brayton refrigeration system – Part 1: Exergy analysis and design of the basic configuration," Energy, Elsevier, vol. 176(C), pages 753-764.
- Son, Hyunsoo & Kim, Jin-Kuk, 2020. "Energy-efficient process design and optimization of dual-expansion systems for BOG (Boil-off gas) Re-liquefaction process in LNG-fueled ship," Energy, Elsevier, vol. 203(C).
- Yin, Liang & Ju, Yonglin, 2020. "Design and analysis of a process for directly Re-liquefying BOG using subcooled LNG for LNG carrier," Energy, Elsevier, vol. 199(C).
- Keuntae Lee & Deuk-Yong Koh & Junseok Ko & Hankil Yeom & Chang-Hyo Son & Jung-In Yoon, 2020. "Design and Performance Test of 2 kW Class Reverse Brayton Cryogenic System," Energies, MDPI, vol. 13(19), pages 1-13, September.
- Bian, Jiang & Yang, Jian & Liu, Yang & Li, Yuxing & Cao, Xuewen, 2022. "Analysis and efficiency enhancement for energy-saving re-liquefaction processes of boil-off gas without external refrigeration cycle on LNG carriers," Energy, Elsevier, vol. 239(PB).
- Lee, Jaejun & Son, Heechang & Yu, Taejong & Oh, Juyoung & Park, Min Gyun & Lim, Youngsub, 2023. "Process design of advanced LNG subcooling system combined with a mixed refrigerant cycle," Energy, Elsevier, vol. 278(PA).
- Kim, Donghoi & Hwang, Chulmin & Gundersen, Truls & Lim, Youngsub, 2019. "Process design and economic optimization of boil-off-gas re-liquefaction systems for LNG carriers," Energy, Elsevier, vol. 173(C), pages 1119-1129.
- Son, Hyunsoo & Kim, Jin-Kuk, 2019. "Operability study on small-scale BOG (boil-off gas) re-liquefaction processes," Energy, Elsevier, vol. 185(C), pages 1263-1281.
- Syauqi, Ahmad & Uwitonze, Hosanna & Chaniago, Yus Donald & Lim, Hankwon, 2024. "Design and optimization of an onboard boil-off gas re-liquefaction process under different weather-related scenarios with machine learning predictions," Energy, Elsevier, vol. 293(C).
- Pospíšil, Jiří & Charvát, Pavel & Arsenyeva, Olga & Klimeš, Lubomír & Špiláček, Michal & Klemeš, Jiří Jaromír, 2019. "Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 1-15.
- Mohd Shariq Khan & Muhammad Abdul Qyyum & Wahid Ali & Aref Wazwaz & Khursheed B. Ansari & Moonyong Lee, 2020. "Energy Saving through Efficient BOG Prediction and Impact of Static Boil-off-Rate in Full Containment-Type LNG Storage Tank," Energies, MDPI, vol. 13(21), pages 1-14, October.
- Yu, Taejong & Kim, Donghoi & Gundersen, Truls & Lim, Youngsub, 2023. "A feasibility study of HFO refrigerants for onboard BOG liquefaction processes," Energy, Elsevier, vol. 282(C).
- Fernández, Ignacio Arias & Gómez, Manuel Romero & Gómez, Javier Romero & Insua, Álvaro Baaliña, 2017. "Review of propulsion systems on LNG carriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1395-1411.
- Duan, Zhongdi & Wang, Jianhu & Yuan, Yuchao & Tang, Wenyong & Xue, Hongxiang, 2023. "Near-wall thermal regulation for cryogenic storage by adsorbent coating: Modelling and pore-scale investigation," Applied Energy, Elsevier, vol. 349(C).
More about this item
Keywords
Liquefied natural gas; Boil-off gas; Onboard reliquefaction; Reverse Brayton cycle; Exergy;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:176:y:2019:i:c:p:861-873. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.