IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v198y2020ics0360544220304527.html
   My bibliography  Save this article

Use of dual pressure Claude liquefaction cycles for complete and energy-efficient reliquefaction of boil-off gas in LNG carrier ships

Author

Listed:
  • Kochunni, Sarun Kumar
  • Chowdhury, Kanchan

Abstract

Onboard reliquefaction of boil-off gas (BOG) generated due to heat in-leak in LNG carrier ships saves its calorific value and protects environment. Direct cryogenic liquefaction cycles, which use BOG as the working fluid, have the potential to reduce power and size of the system much below the level of existing reverse Brayton refrigerator-based reliquefiers. Though cryogenic liquefiers are not used for liquefaction of natural gas because of large changes in composition of mixture gases after Joule-Thomson expansion in direct liquefaction, it can be safely employed for BOG reliquefaction because large LNG volume acts as the buffer maintaining the composition of BOG throughout the voyage that consists primarily of methane and nitrogen only. Systems are simulated on Aspen HYSYS V8.6®. Dual pressure Claude cycle at BOG compressor exit pressure of 60 bara show 53.7%, 29.5% and 16.3% higher exergy efficiency when compared with reverse Brayton based, Cascade based and mixed refrigerant based indirect reliquefiers respectively. Heat exchanger sizes reduce with increased BOG compressor pressure. Economic analysis of the cryogenic BOG reliquefier with 60 bara compressor pressure shows about 2 years period of return on investment.

Suggested Citation

  • Kochunni, Sarun Kumar & Chowdhury, Kanchan, 2020. "Use of dual pressure Claude liquefaction cycles for complete and energy-efficient reliquefaction of boil-off gas in LNG carrier ships," Energy, Elsevier, vol. 198(C).
  • Handle: RePEc:eee:energy:v:198:y:2020:i:c:s0360544220304527
    DOI: 10.1016/j.energy.2020.117345
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220304527
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117345?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tesch, Stefanie & Morosuk, Tatiana & Tsatsaronis, George, 2017. "Exergetic and economic evaluation of safety-related concepts for the regasification of LNG integrated into air separation processes," Energy, Elsevier, vol. 141(C), pages 2458-2469.
    2. Kwak, Dong-Hun & Heo, Jeong-Ho & Park, Seung-Ha & Seo, Seok-Jang & Kim, Jin-Kuk, 2018. "Energy-efficient design and optimization of boil-off gas (BOG) re-liquefaction process for liquefied natural gas (LNG)-fuelled ship," Energy, Elsevier, vol. 148(C), pages 915-929.
    3. He, Tianbiao & Ju, Yonglin, 2014. "A novel conceptual design of parallel nitrogen expansion liquefaction process for small-scale LNG (liquefied natural gas) plant in skid-mount packages," Energy, Elsevier, vol. 75(C), pages 349-359.
    4. Kim, Donghoi & Hwang, Chulmin & Gundersen, Truls & Lim, Youngsub, 2019. "Process design and economic optimization of boil-off-gas re-liquefaction systems for LNG carriers," Energy, Elsevier, vol. 173(C), pages 1119-1129.
    5. Yin, L. & Ju, Y.L., 2019. "Comparison and analysis of two nitrogen expansion cycles for BOG Re-liquefaction systems for small LNG ships," Energy, Elsevier, vol. 172(C), pages 769-776.
    6. Kochunni, Sarun Kumar & Joy, Jubil & Chowdhury, Kanchan, 2019. "LNG boil-off gas reliquefaction by Brayton refrigeration system – Part 2: Improvements over basic configuration," Energy, Elsevier, vol. 176(C), pages 861-873.
    7. Kochunni, Sarun Kumar & Chowdhury, Kanchan, 2019. "LNG boil-off gas reliquefaction by Brayton refrigeration system – Part 1: Exergy analysis and design of the basic configuration," Energy, Elsevier, vol. 176(C), pages 753-764.
    8. Shin, Younggy & Lee, Yoon Pyo, 2009. "Design of a boil-off natural gas reliquefaction control system for LNG carriers," Applied Energy, Elsevier, vol. 86(1), pages 37-44, January.
    9. Thomas, Rijo Jacob & Ghosh, Parthasarathi & Chowdhury, Kanchan, 2012. "Application of exergy analysis in designing helium liquefiers," Energy, Elsevier, vol. 37(1), pages 207-219.
    10. Sayyaadi, Hoseyn & Babaelahi, M., 2011. "Multi-objective optimization of a joule cycle for re-liquefaction of the Liquefied Natural Gas," Applied Energy, Elsevier, vol. 88(9), pages 3012-3021.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jin, Chunhe & Lim, Youngsub & Xu, Xin, 2023. "Performance analysis of a boil-off gas re-liquefaction process for LNG carriers," Energy, Elsevier, vol. 278(C).
    2. Sun, Daming & Wang, Chenghong & Shen, Qie, 2024. "A compression-free re-liquefication process of LNG boil-off gas using LNG cold energy," Energy, Elsevier, vol. 294(C).
    3. Yin, Liang & Ju, Yonglin, 2022. "Review on the design and optimization of BOG re-liquefaction process in LNG ship," Energy, Elsevier, vol. 244(PB).
    4. Yin, Liang & Ju, Yonglin, 2020. "Conceptual design and analysis of a novel process for BOG re-liquefaction combined with absorption refrigeration cycle," Energy, Elsevier, vol. 205(C).
    5. Bian, Jiang & Yang, Jian & Liu, Yang & Li, Yuxing & Cao, Xuewen, 2022. "Analysis and efficiency enhancement for energy-saving re-liquefaction processes of boil-off gas without external refrigeration cycle on LNG carriers," Energy, Elsevier, vol. 239(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cao, Xuewen & Yang, Jian & Zhang, Yue & Gao, Song & Bian, Jiang, 2022. "Process optimization, exergy and economic analysis of boil-off gas re-liquefaction processes for LNG carriers," Energy, Elsevier, vol. 242(C).
    2. Yin, Liang & Ju, Yonglin, 2022. "Review on the design and optimization of BOG re-liquefaction process in LNG ship," Energy, Elsevier, vol. 244(PB).
    3. Yin, Liang & Ju, Yonglin, 2020. "Conceptual design and analysis of a novel process for BOG re-liquefaction combined with absorption refrigeration cycle," Energy, Elsevier, vol. 205(C).
    4. Yin, Liang & Ju, Yonglin, 2020. "Design and analysis of a process for directly Re-liquefying BOG using subcooled LNG for LNG carrier," Energy, Elsevier, vol. 199(C).
    5. Son, Hyunsoo & Kim, Jin-Kuk, 2020. "Energy-efficient process design and optimization of dual-expansion systems for BOG (Boil-off gas) Re-liquefaction process in LNG-fueled ship," Energy, Elsevier, vol. 203(C).
    6. Bian, Jiang & Yang, Jian & Liu, Yang & Li, Yuxing & Cao, Xuewen, 2022. "Analysis and efficiency enhancement for energy-saving re-liquefaction processes of boil-off gas without external refrigeration cycle on LNG carriers," Energy, Elsevier, vol. 239(PB).
    7. Lee, Jaejun & Son, Heechang & Yu, Taejong & Oh, Juyoung & Park, Min Gyun & Lim, Youngsub, 2023. "Process design of advanced LNG subcooling system combined with a mixed refrigerant cycle," Energy, Elsevier, vol. 278(PA).
    8. Minsoo Choi & Wongwan Jung & Sanghyuk Lee & Taehwan Joung & Daejun Chang, 2021. "Thermal Efficiency and Economics of a Boil-Off Hydrogen Re-Liquefaction System Considering the Energy Efficiency Design Index for Liquid Hydrogen Carriers," Energies, MDPI, vol. 14(15), pages 1-23, July.
    9. Kochunni, Sarun Kumar & Joy, Jubil & Chowdhury, Kanchan, 2019. "LNG boil-off gas reliquefaction by Brayton refrigeration system – Part 2: Improvements over basic configuration," Energy, Elsevier, vol. 176(C), pages 861-873.
    10. Sun, Daming & Wang, Chenghong & Shen, Qie, 2024. "A compression-free re-liquefication process of LNG boil-off gas using LNG cold energy," Energy, Elsevier, vol. 294(C).
    11. Keuntae Lee & Deuk-Yong Koh & Junseok Ko & Hankil Yeom & Chang-Hyo Son & Jung-In Yoon, 2020. "Design and Performance Test of 2 kW Class Reverse Brayton Cryogenic System," Energies, MDPI, vol. 13(19), pages 1-13, September.
    12. Kim, Donghoi & Hwang, Chulmin & Gundersen, Truls & Lim, Youngsub, 2019. "Process design and economic optimization of boil-off-gas re-liquefaction systems for LNG carriers," Energy, Elsevier, vol. 173(C), pages 1119-1129.
    13. Kochunni, Sarun Kumar & Chowdhury, Kanchan, 2019. "LNG boil-off gas reliquefaction by Brayton refrigeration system – Part 1: Exergy analysis and design of the basic configuration," Energy, Elsevier, vol. 176(C), pages 753-764.
    14. Jin, Chunhe & Lim, Youngsub & Xu, Xin, 2023. "Performance analysis of a boil-off gas re-liquefaction process for LNG carriers," Energy, Elsevier, vol. 278(C).
    15. Joy, Jubil & Kochunni, Sarun Kumar & Chowdhury, Kanchan, 2022. "Size reduction and enhanced power generation in ORC by vaporizing LNG at high supercritical pressure irrespective of delivery pressure," Energy, Elsevier, vol. 260(C).
    16. Duan, Zhongdi & Wang, Jianhu & Yuan, Yuchao & Tang, Wenyong & Xue, Hongxiang, 2023. "Near-wall thermal regulation for cryogenic storage by adsorbent coating: Modelling and pore-scale investigation," Applied Energy, Elsevier, vol. 349(C).
    17. Son, Hyunsoo & Kim, Jin-Kuk, 2019. "Operability study on small-scale BOG (boil-off gas) re-liquefaction processes," Energy, Elsevier, vol. 185(C), pages 1263-1281.
    18. Wang, Chenghong & Sun, Daming & Shen, Qie & Shen, Keyi & Linghu, Jianshe & Wang, Xiaodong, 2023. "Techno-economic analysis on nitrogen reverse Brayton cycles for efficient coalbed methane liquefaction process," Energy, Elsevier, vol. 280(C).
    19. Tomasz Banaszkiewicz & Maciej Chorowski & Wojciech Gizicki & Artur Jedrusyna & Jakub Kielar & Ziemowit Malecha & Agnieszka Piotrowska & Jaroslaw Polinski & Zbigniew Rogala & Korneliusz Sierpowski & Ja, 2020. "Liquefied Natural Gas in Mobile Applications—Opportunities and Challenges," Energies, MDPI, vol. 13(21), pages 1-35, October.
    20. Wang, Cheng & Ju, Yonglin & Fu, Yunzhun, 2021. "Comparative life cycle cost analysis of low pressure fuel gas supply systems for LNG fueled ships," Energy, Elsevier, vol. 218(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:198:y:2020:i:c:s0360544220304527. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.