IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i19p5089-d421556.html
   My bibliography  Save this article

Design and Performance Test of 2 kW Class Reverse Brayton Cryogenic System

Author

Listed:
  • Keuntae Lee

    (LNG and Cryogenic Technology Center, Korea Institute of Machinery & Materials, Gimhae 50963, Korea)

  • Deuk-Yong Koh

    (LNG and Cryogenic Technology Center, Korea Institute of Machinery & Materials, Gimhae 50963, Korea)

  • Junseok Ko

    (Department of Energy Conversion Systems, Korea Institute of Machinery & Materials, Daejeon 34103, Korea)

  • Hankil Yeom

    (Department of Energy Conversion Systems, Korea Institute of Machinery & Materials, Daejeon 34103, Korea)

  • Chang-Hyo Son

    (Department of Refrigeration and Air-Conditioning Engineering, Pukyong National University, Pusan 48513, Korea)

  • Jung-In Yoon

    (Department of Refrigeration and Air-Conditioning Engineering, Pukyong National University, Pusan 48513, Korea)

Abstract

With the increased commercialization of high-temperature superconducting (HTS) power cables cooled using liquid nitrogen and the use of liquefied natural gas as fuel, the need for large-capacity reverse Brayton cryogenic systems is gradually increasing. In this paper, the thermodynamic design of a reverse Brayton cryogenic system with a cooling capacity of the 2 kW class at 77 K using neon as a refrigerant is described. Unlike conventional reverse Brayton systems, the proposed system uses a cryogenic turbo-expander, scroll compressor, and plate-type heat exchanger. The performance test conducted on the fabricated system is also described. The isentropic efficiency of the cryogenic turbo-expander was measured to be 86%, which is higher than the design specification. The effectiveness of the heat exchanger and the flow rate and operating pressure of the refrigerant were found to be lower than the design specifications. Consequently, the refrigeration capacity of the fabricated reverse Brayton cryogenic system was measured to be 1.23 kW at 77 K. In the future, we expect to achieve the targeted refrigeration capacity through further improvements. In addition, the faster commercialization of HTS power cables and more efficient storage of liquefied natural gas will be realized.

Suggested Citation

  • Keuntae Lee & Deuk-Yong Koh & Junseok Ko & Hankil Yeom & Chang-Hyo Son & Jung-In Yoon, 2020. "Design and Performance Test of 2 kW Class Reverse Brayton Cryogenic System," Energies, MDPI, vol. 13(19), pages 1-13, September.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:19:p:5089-:d:421556
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/19/5089/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/19/5089/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Son, Hyunsoo & Kim, Jin-Kuk, 2020. "Energy-efficient process design and optimization of dual-expansion systems for BOG (Boil-off gas) Re-liquefaction process in LNG-fueled ship," Energy, Elsevier, vol. 203(C).
    2. Kwak, Dong-Hun & Heo, Jeong-Ho & Park, Seung-Ha & Seo, Seok-Jang & Kim, Jin-Kuk, 2018. "Energy-efficient design and optimization of boil-off gas (BOG) re-liquefaction process for liquefied natural gas (LNG)-fuelled ship," Energy, Elsevier, vol. 148(C), pages 915-929.
    3. Kochunni, Sarun Kumar & Joy, Jubil & Chowdhury, Kanchan, 2019. "LNG boil-off gas reliquefaction by Brayton refrigeration system – Part 2: Improvements over basic configuration," Energy, Elsevier, vol. 176(C), pages 861-873.
    4. Kochunni, Sarun Kumar & Chowdhury, Kanchan, 2019. "LNG boil-off gas reliquefaction by Brayton refrigeration system – Part 1: Exergy analysis and design of the basic configuration," Energy, Elsevier, vol. 176(C), pages 753-764.
    5. Seok-Ju Lee & Seong Yeol Kang & Minwon Park & DuYean Won & Jaeun Yoo & Hyung Suk Yang, 2020. "Performance Analysis of Real-Scale 23 kV/60 MVA Class Tri-Axial HTS Power Cable for Real-Grid Application in Korea," Energies, MDPI, vol. 13(8), pages 1-13, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiongjiong Cai & Peng Ke & Xiao Qu & Zihui Wang, 2022. "Research on the Design of Auxiliary Generator for Enthalpy Reduction and Steady Speed Scroll Expander," Energies, MDPI, vol. 15(9), pages 1-17, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cao, Xuewen & Yang, Jian & Zhang, Yue & Gao, Song & Bian, Jiang, 2022. "Process optimization, exergy and economic analysis of boil-off gas re-liquefaction processes for LNG carriers," Energy, Elsevier, vol. 242(C).
    2. Bian, Jiang & Yang, Jian & Liu, Yang & Li, Yuxing & Cao, Xuewen, 2022. "Analysis and efficiency enhancement for energy-saving re-liquefaction processes of boil-off gas without external refrigeration cycle on LNG carriers," Energy, Elsevier, vol. 239(PB).
    3. Yin, Liang & Ju, Yonglin, 2020. "Conceptual design and analysis of a novel process for BOG re-liquefaction combined with absorption refrigeration cycle," Energy, Elsevier, vol. 205(C).
    4. Wang, Chenghong & Sun, Daming & Shen, Qie & Duan, Yuanyuan & Huang, Xiaoxue, 2024. "A re-liquefaction process of LNG boil-off gas using an improved Kapitsa cycle: Eliminating the BOG compressor," Energy, Elsevier, vol. 304(C).
    5. Yin, Liang & Ju, Yonglin, 2022. "Review on the design and optimization of BOG re-liquefaction process in LNG ship," Energy, Elsevier, vol. 244(PB).
    6. Kochunni, Sarun Kumar & Chowdhury, Kanchan, 2020. "Use of dual pressure Claude liquefaction cycles for complete and energy-efficient reliquefaction of boil-off gas in LNG carrier ships," Energy, Elsevier, vol. 198(C).
    7. Son, Hyunsoo & Kim, Jin-Kuk, 2020. "Energy-efficient process design and optimization of dual-expansion systems for BOG (Boil-off gas) Re-liquefaction process in LNG-fueled ship," Energy, Elsevier, vol. 203(C).
    8. Yin, Liang & Ju, Yonglin, 2020. "Design and analysis of a process for directly Re-liquefying BOG using subcooled LNG for LNG carrier," Energy, Elsevier, vol. 199(C).
    9. Kochunni, Sarun Kumar & Joy, Jubil & Chowdhury, Kanchan, 2019. "LNG boil-off gas reliquefaction by Brayton refrigeration system – Part 2: Improvements over basic configuration," Energy, Elsevier, vol. 176(C), pages 861-873.
    10. Lee, Jaejun & Son, Heechang & Yu, Taejong & Oh, Juyoung & Park, Min Gyun & Lim, Youngsub, 2023. "Process design of advanced LNG subcooling system combined with a mixed refrigerant cycle," Energy, Elsevier, vol. 278(PA).
    11. Tomasz Banaszkiewicz & Maciej Chorowski & Wojciech Gizicki & Artur Jedrusyna & Jakub Kielar & Ziemowit Malecha & Agnieszka Piotrowska & Jaroslaw Polinski & Zbigniew Rogala & Korneliusz Sierpowski & Ja, 2020. "Liquefied Natural Gas in Mobile Applications—Opportunities and Challenges," Energies, MDPI, vol. 13(21), pages 1-35, October.
    12. Wang, Cheng & Ju, Yonglin & Fu, Yunzhun, 2021. "Comparative life cycle cost analysis of low pressure fuel gas supply systems for LNG fueled ships," Energy, Elsevier, vol. 218(C).
    13. Jin, Chunhe & Lim, Youngsub & Xu, Xin, 2023. "Performance analysis of a boil-off gas re-liquefaction process for LNG carriers," Energy, Elsevier, vol. 278(C).
    14. Sun, Daming & Wang, Chenghong & Shen, Qie, 2024. "A compression-free re-liquefication process of LNG boil-off gas using LNG cold energy," Energy, Elsevier, vol. 294(C).
    15. Youngjun Choi & Dongmin Kim & Changhyung Lee & Duyeon Won & Jaeun Yoo & Hyungsuk Yang & Seokho Kim, 2020. "Thermo-Hydraulic Analysis of a Tri-Axial High-Temperature Superconducting Power Cable with Respect to Installation Site Geography," Energies, MDPI, vol. 13(15), pages 1-17, July.
    16. Yu, Taejong & Kim, Donghoi & Gundersen, Truls & Lim, Youngsub, 2023. "A feasibility study of HFO refrigerants for onboard BOG liquefaction processes," Energy, Elsevier, vol. 282(C).
    17. Huerta, Felipe & Vesovic, Velisa, 2019. "A realistic vapour phase heat transfer model for the weathering of LNG stored in large tanks," Energy, Elsevier, vol. 174(C), pages 280-291.
    18. Zineb Bouabidi & Fares Almomani & Easa I. Al-musleh & Mary A. Katebah & Mohamed M. Hussein & Abdur Rahman Shazed & Iftekhar A. Karimi & Hassan Alfadala, 2021. "Study on Boil-off Gas (BOG) Minimization and Recovery Strategies from Actual Baseload LNG Export Terminal: Towards Sustainable LNG Chains," Energies, MDPI, vol. 14(12), pages 1-22, June.
    19. Sun, Wei & Cheng, Qinglin & Li, Zhidong & Wang, Zhihua & Gan, Yifan & Liu, Yang & Shao, Shuai, 2019. "Study on Coil Optimization on the Basis of Heating Effect and Effective Energy Evaluation during Oil Storage Process," Energy, Elsevier, vol. 185(C), pages 505-520.
    20. Ghorbani, Bahram & Shirmohammadi, Reza & Mehrpooya, Mehdi & Hamedi, Mohammad-Hossein, 2018. "Structural, operational and economic optimization of cryogenic natural gas plant using NSGAII two-objective genetic algorithm," Energy, Elsevier, vol. 159(C), pages 410-428.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:19:p:5089-:d:421556. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.