IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v176y2019icp830-852.html
   My bibliography  Save this article

Effect of combustion chamber bowl geometry modification on engine performance, combustion and emission characteristics of biodiesel fuelled diesel engine with its energy and exergy analysis

Author

Listed:
  • Karthickeyan, V.

Abstract

With deteriorating energy reserves, rising environmental apprehensions and progressively more firm energy regulations have made renewable energy resources as an extremely attractive alternative source for near future. Biodiesel was considered as one of the promising energy resource for diesel engines. In the present work, non-edible oils namely pumpkin seed oil and Moringa oleifera oil were converted into methyl ester of Pumpkin seed oil (B1) and Moringa oleifera oil (B2) using transesterification process. The engine modification technique was said to be one of the current development in the field of the engine research motivating to achieve complete combustion. Two novel bowl geometries namely Toroidal Combustion Chamber (TCC) and Trapezoidal Combustion Chamber (TRCC) were developed and compared with standard Hemispherical Combustion Chamber (HCC). Further, the work was progressed to exergy and energy analysis. Amongst the bowl geometries, TCC showed better engine characteristics than TRCC and HCC. High swirl and squish behaviour of TCC engine helps in better air-fuel mixing and leads to complete combustion. Biodiesel samples contain oxygen molecules in its structure, reduced engine exhaust emissions except NOx were observed. On the whole, B1 may be considered as the promising alternative fuel as it exhibited 66.51% of exergy efficiency in TCC engine.

Suggested Citation

  • Karthickeyan, V., 2019. "Effect of combustion chamber bowl geometry modification on engine performance, combustion and emission characteristics of biodiesel fuelled diesel engine with its energy and exergy analysis," Energy, Elsevier, vol. 176(C), pages 830-852.
  • Handle: RePEc:eee:energy:v:176:y:2019:i:c:p:830-852
    DOI: 10.1016/j.energy.2019.04.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219306310
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.04.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Krishnamoorthi, M. & Malayalamurthi, R., 2018. "Availability analysis, performance, combustion and emission behavior of bael oil - diesel - diethyl ether blends in a variable compression ratio diesel engine," Renewable Energy, Elsevier, vol. 119(C), pages 235-252.
    2. Gharehghani, Ayatallah & Mirsalim, Mostafa & Hosseini, Reza, 2017. "Effects of waste fish oil biodiesel on diesel engine combustion characteristics and emission," Renewable Energy, Elsevier, vol. 101(C), pages 930-936.
    3. Jaichandar, S. & Senthil Kumar, P. & Annamalai, K., 2012. "Combined effect of injection timing and combustion chamber geometry on the performance of a biodiesel fueled diesel engine," Energy, Elsevier, vol. 47(1), pages 388-394.
    4. Atabani, A.E. & Silitonga, A.S. & Ong, H.C. & Mahlia, T.M.I. & Masjuki, H.H. & Badruddin, Irfan Anjum & Fayaz, H., 2013. "Non-edible vegetable oils: A critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 211-245.
    5. Jaichandar, S. & Annamalai, K., 2013. "Combined impact of injection pressure and combustion chamber geometry on the performance of a biodiesel fueled diesel engine," Energy, Elsevier, vol. 55(C), pages 330-339.
    6. Jaichandar, S. & Annamalai, K., 2012. "Influences of re-entrant combustion chamber geometry on the performance of Pongamia biodiesel in a DI diesel engine," Energy, Elsevier, vol. 44(1), pages 633-640.
    7. Jafarmadar, Samad & Nemati, Peyman, 2016. "Exergy analysis of diesel/biodiesel combustion in a homogenous charge compression ignition (HCCI) engine using three-dimensional model," Renewable Energy, Elsevier, vol. 99(C), pages 514-523.
    8. Varun, & Singh, Paramvir & Tiwari, Samaresh Kumar & Singh, Rituparn & Kumar, Naresh, 2017. "Modification in combustion chamber geometry of CI engines for suitability of biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1016-1033.
    9. Channappagoudra, Manjunath & Ramesh, K. & Manavendra, G., 2019. "Comparative study of standard engine and modified engine with different piston bowl geometries operated with B20 fuel blend," Renewable Energy, Elsevier, vol. 133(C), pages 216-232.
    10. Can, Özer & Öztürk, Erkan & Yücesu, H. Serdar, 2017. "Combustion and exhaust emissions of canola biodiesel blends in a single cylinder DI diesel engine," Renewable Energy, Elsevier, vol. 109(C), pages 73-82.
    11. Krishnamoorthi, M. & Malayalamurthi, R., 2017. "Experimental investigation on performance, emission behavior and exergy analysis of a variable compression ratio engine fueled with diesel - aegle marmelos oil - diethyl ether blends," Energy, Elsevier, vol. 128(C), pages 312-328.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2021. "Combustion chamber modifications to improve diesel engine performance and reduce emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    2. Thangarasu, Vinoth & M, Angkayarkan Vinayakaselvi & Ramanathan, Anand, 2021. "Artificial neural network approach for parametric investigation of biodiesel synthesis using biocatalyst and engine characteristics of diesel engine fuelled with Aegle Marmelos Correa biodiesel," Energy, Elsevier, vol. 230(C).
    3. Ade Suhara & Karyadi & Safarudin Gazali Herawan & Andy Tirta & Muhammad Idris & Muhammad Faizullizam Roslan & Nicky Rahmana Putra & April Lia Hananto & Ibham Veza, 2024. "Biodiesel Sustainability: Review of Progress and Challenges of Biodiesel as Sustainable Biofuel," Clean Technol., MDPI, vol. 6(3), pages 1-21, July.
    4. Zhipeng Shi & Jun Wang & Xiangchi Guo & Xueyuan Liu, 2023. "Multi-Objective Optimization of the Structural Design of a Combustion Chamber of a Small Agricultural Diesel Engine Fueled with B20 Blend Fuel at a High Altitude Area," Sustainability, MDPI, vol. 15(15), pages 1-13, July.
    5. Chang, Jiang & Li, Xiangrong & Liu, Yang & Liu, Lifang & Chen, Yanlin & Liu, Dong & Kang, Yuning, 2022. "Combustion performance and energy distributions in a new multi-swirl combustion system," Energy, Elsevier, vol. 256(C).
    6. Petković, Dalibor & Barjaktarovic, Miljana & Milošević, Slaviša & Denić, Nebojša & Spasić, Boban & Stojanović, Jelena & Milovancevic, Milos, 2021. "Neuro fuzzy estimation of the most influential parameters for Kusum biodiesel performance," Energy, Elsevier, vol. 229(C).
    7. Ma, Baodong & Yao, Anren & Yao, Chunde & Wu, Taoyang & Wang, Bin & Gao, Jian & Chen, Chao, 2020. "Exergy loss analysis on diesel methanol dual fuel engine under different operating parameters," Applied Energy, Elsevier, vol. 261(C).
    8. Hamid, M. Fadzli & Idroas, M. Yusof & Mazlan, M. & Sa'ad, S. & Teoh, Y.H. & Che Mat, S. & Miskam, M.A. & Abdullah, M.K., 2022. "Methods for improving the in-cylinder airflow characteristics for sustainable transportation using fuels with higher viscosity: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    9. Mendiburu, Andrés Z. & Lauermann, Carlos H. & Hayashi, Thamy C. & Mariños, Diego J. & Rodrigues da Costa, Roberto Berlini & Coronado, Christian J.R. & Roberts, Justo J. & de Carvalho, João A., 2022. "Ethanol as a renewable biofuel: Combustion characteristics and application in engines," Energy, Elsevier, vol. 257(C).
    10. Abul Kalam Azad & Julian Adhikari & Pobitra Halder & Mohammad G. Rasul & Nur M. S. Hassan & Mohammad M. K. Khan & Salman Raza Naqvi & Karthickeyan Viswanathan, 2020. "Performance, Emission and Combustion Characteristics of a Diesel Engine Powered by Macadamia and Grapeseed Biodiesels," Energies, MDPI, vol. 13(11), pages 1-19, May.
    11. Soudagar, Manzoore Elahi M. & Mujtaba, M.A. & Safaei, Mohammad Reza & Afzal, Asif & V, Dhana Raju & Ahmed, Waqar & Banapurmath, N.R. & Hossain, Nazia & Bashir, Shahid & Badruddin, Irfan Anjum & Goodar, 2021. "Effect of Sr@ZnO nanoparticles and Ricinus communis biodiesel-diesel fuel blends on modified CRDI diesel engine characteristics," Energy, Elsevier, vol. 215(PA).
    12. Simón Martínez-Martínez & Oscar A. de la Garza & Miguel García-Yera & Ricardo Martínez-Carrillo & Fausto A. Sánchez-Cruz, 2021. "Hydraulic Interactions between Injection Events Using Multiple Injection Strategies and a Solenoid Diesel Injector," Energies, MDPI, vol. 14(11), pages 1-11, May.
    13. Karol Tucki & Remigiusz Mruk & Olga Orynycz & Andrzej Wasiak & Antoni Świć, 2019. "Thermodynamic Fundamentals for Fuel Production Management," Sustainability, MDPI, vol. 11(16), pages 1-19, August.
    14. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2023. "Advanced strategies to reduce harmful nitrogen-oxide emissions from biodiesel fueled engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    15. Ludovic Lamoot & Brady Manescau & Khaled Chetehouna & Nicolas Gascoin, 2021. "Review on the Effect of the Phenomenon of Cavitation in Combustion Efficiency and the Role of Biofuels as a Solution against Cavitation," Energies, MDPI, vol. 14(21), pages 1-35, November.
    16. Channapattana, Shylesha V. & Campli, Srinidhi & Madhusudhan, A. & Notla, Srihari & Arkerimath, Rachayya & Tripathi, Mukesh Kumar, 2023. "Energy analysis of DI-CI engine with nickel oxide nanoparticle added azadirachta indica biofuel at different static injection timing based on exergy," Energy, Elsevier, vol. 267(C).
    17. Karthickeyan, V., 2020. "Experimental investigation on combined effect of ignition promoters and ceramic coating fuelled with papaya seed oil methyl ester in DI diesel engine," Renewable Energy, Elsevier, vol. 148(C), pages 772-789.
    18. Ming Wen & Yufeng Li & Weiqing Zhu & Rulou Cao & Kai Sun, 2022. "Experimental Study on Effects of RCSL and RCTL Combustion Chamber for Combustion Process of Highly Intensified Diesel Engine," Energies, MDPI, vol. 15(17), pages 1-13, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2021. "Combustion chamber modifications to improve diesel engine performance and reduce emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    2. Arun Teja Doppalapudi & Abul Kalam Azad & Mohammad Masud Kamal Khan, 2023. "Analysis of Improved In-Cylinder Combustion Characteristics with Chamber Modifications of the Diesel Engine," Energies, MDPI, vol. 16(6), pages 1-18, March.
    3. Goel, Varun & Kumar, Naresh & Singh, Paramvir, 2018. "Impact of modified parameters on diesel engine characteristics using biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2716-2729.
    4. Varun, & Singh, Paramvir & Tiwari, Samaresh Kumar & Singh, Rituparn & Kumar, Naresh, 2017. "Modification in combustion chamber geometry of CI engines for suitability of biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1016-1033.
    5. S. M. Ashrafur Rahman & I. M. Rizwanul Fattah & Hwai Chyuan Ong & M. F. M. A. Zamri, 2021. "State-of-the-Art of Strategies to Reduce Exhaust Emissions from Diesel Engine Vehicles," Energies, MDPI, vol. 14(6), pages 1-24, March.
    6. Krishnamoorthi, M. & Malayalamurthi, R. & Sakthivel, R., 2019. "Optimization of compression ignition engine fueled with diesel - chaulmoogra oil - diethyl ether blend with engine parameters and exhaust gas recirculation," Renewable Energy, Elsevier, vol. 134(C), pages 579-602.
    7. Shameer, P. Mohamed & Ramesh, K., 2018. "Assessment on the consequences of injection timing and injection pressure on combustion characteristics of sustainable biodiesel fuelled engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 45-61.
    8. Taghavifar, Hadi & Nemati, Arash & Salvador, F.J. & De la Morena, J., 2019. "Improved mixture quality by advanced dual-nozzle, included-angle split injection in HSDI engine: Exergetic exploration," Energy, Elsevier, vol. 167(C), pages 211-223.
    9. Khan, Shahanwaz & Panua, Rajsekhar & Bose, Probir Kumar, 2019. "The impact of combustion chamber configuration on combustion and emissions of a single cylinder diesel engine fuelled with soybean methyl ester blends with diesel," Renewable Energy, Elsevier, vol. 143(C), pages 335-351.
    10. Zhipeng Shi & Jun Wang & Xiangchi Guo & Xueyuan Liu, 2023. "Multi-Objective Optimization of the Structural Design of a Combustion Chamber of a Small Agricultural Diesel Engine Fueled with B20 Blend Fuel at a High Altitude Area," Sustainability, MDPI, vol. 15(15), pages 1-13, July.
    11. Ramalingam, Senthil & Rajendran, Silambarasan & Ganesan, Pranesh & Govindasamy, Mohan, 2018. "Effect of operating parameters and antioxidant additives with biodiesels to improve the performance and reducing the emissions in a compression ignition engine – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 775-788.
    12. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Mamat, Rizalman & Sidik, Nor Azwadi Che & Azmi, W.H., 2017. "The effect of combustion management on diesel engine emissions fueled with biodiesel-diesel blends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 307-331.
    13. Mahmudul, H.M. & Hagos, F.Y. & Mamat, R. & Adam, A. Abdul & Ishak, W.F.W. & Alenezi, R., 2017. "Production, characterization and performance of biodiesel as an alternative fuel in diesel engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 497-509.
    14. Dong Lin Loo & Yew Heng Teoh & Heoy Geok How & Jun Sheng Teh & Liviu Catalin Andrei & Slađana Starčević & Farooq Sher, 2021. "Applications Characteristics of Different Biodiesel Blends in Modern Vehicles Engines: A Review," Sustainability, MDPI, vol. 13(17), pages 1-31, August.
    15. Laura Aguado-Deblas & Jesús Hidalgo-Carrillo & Felipa M. Bautista & Diego Luna & Carlos Luna & Juan Calero & Alejandro Posadillo & Antonio A. Romero & Rafael Estevez, 2020. "Diethyl Ether as an Oxygenated Additive for Fossil Diesel/Vegetable Oil Blends: Evaluation of Performance and Emission Quality of Triple Blends on a Diesel Engine," Energies, MDPI, vol. 13(7), pages 1-16, March.
    16. Yunus khan, T.M. & Badruddin, Irfan Anjum & Badarudin, Ahmad & Banapurmath, N.R. & Salman Ahmed, N.J. & Quadir, G.A. & Al-Rashed, Abdullah A.A.A. & Khaleed, H.M.T. & Kamangar, Sarfaraz, 2015. "Effects of engine variables and heat transfer on the performance of biodiesel fueled IC engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 682-691.
    17. Abedin, M.J. & Kalam, M.A. & Masjuki, H.H. & Sabri, M.F.M. & Rahman, S.M. Ashrafur & Sanjid, A. & Fattah, I.M. Rizwanul, 2016. "Production of biodiesel from a non-edible source and study of its combustion, and emission characteristics: A comparative study with B5," Renewable Energy, Elsevier, vol. 88(C), pages 20-29.
    18. Soudagar, Manzoore Elahi M. & Mujtaba, M.A. & Safaei, Mohammad Reza & Afzal, Asif & V, Dhana Raju & Ahmed, Waqar & Banapurmath, N.R. & Hossain, Nazia & Bashir, Shahid & Badruddin, Irfan Anjum & Goodar, 2021. "Effect of Sr@ZnO nanoparticles and Ricinus communis biodiesel-diesel fuel blends on modified CRDI diesel engine characteristics," Energy, Elsevier, vol. 215(PA).
    19. T. M. Yunus Khan, 2020. "A Review of Performance-Enhancing Innovative Modifications in Biodiesel Engines," Energies, MDPI, vol. 13(17), pages 1-22, August.
    20. Singh, Paramvir & Varun, & Chauhan, S.R. & Kumar, Niraj, 2016. "A review on methodology for complete elimination of diesel from CI engines using mixed feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1110-1125.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:176:y:2019:i:c:p:830-852. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.