IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i6p2586-d1092251.html
   My bibliography  Save this article

Analysis of Improved In-Cylinder Combustion Characteristics with Chamber Modifications of the Diesel Engine

Author

Listed:
  • Arun Teja Doppalapudi

    (School of Engineering and Technology, Central Queensland University, Melbourne Campus, 120 Spencer Street, Melbourne, VIC 3000, Australia)

  • Abul Kalam Azad

    (School of Engineering and Technology, Central Queensland University, Melbourne Campus, 120 Spencer Street, Melbourne, VIC 3000, Australia)

  • Mohammad Masud Kamal Khan

    (School of Engineering, Computer and Mathematical Sciences, Auckland University of Technology, Auckland 1010, New Zealand)

Abstract

This study numerically analyses the effects of chamber modifications to investigate the improvement of in-cylinder combustion characteristics of the diesel engine using a computational fluid dynamics (CFD) approach. Five different modified chambers, namely, the double swirl combustion chamber (DSCC), bathtub combustion chamber (BTCC), double toroidal re-entrant combustion chamber (DTRCC), shallow depth combustion chamber (SCC), and stepped bowl combustion chamber (SBCC) were developed and compared with a reference flat combustion chamber (FCC). The effects of chamber modifications on temperature formation, velocity distribution, injection profiles, and in-cylinder turbulent motions (swirl and tumble ratio) were investigated. During the compression stroke, near top dead centre, the SCC showed a peak temperature of 970 K, followed by the FCC (968 K), SBCC (967 K), and DTRCC (748 K to 815 K). The DSCC and the SCC showed a high swirl ratio above 0.6, whereas the DTRCC and the BTCC showed a high tumble ratio of approximately 0.4. This study found that the SCC, BTCC, and DSCC have better combustion rates than the FCC in terms of temperature, heat release rate, and velocity distribution. However, the DTRCC showed poor temperature formation rates and rapid heat release rates (approx. 150 J/°CA), which can lead to rapid combustion and knocking tendencies. In conclusion, the DSCC and the SCC showed better combustion rates than the other chambers. In addition, turbulent motions inside the chambers avoided combustion in crevice regions. This study recommends avoiding chambers with wider bowls in order to prevent uneven combustion across the cylinder. Furthermore, split bowls such as the DSCC, along with adjusted injection rates, can provide better results in terms of combustion.

Suggested Citation

  • Arun Teja Doppalapudi & Abul Kalam Azad & Mohammad Masud Kamal Khan, 2023. "Analysis of Improved In-Cylinder Combustion Characteristics with Chamber Modifications of the Diesel Engine," Energies, MDPI, vol. 16(6), pages 1-18, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2586-:d:1092251
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/6/2586/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/6/2586/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xu, Leilei & Bai, Xue-Song & Li, Yaopeng & Treacy, Mark & Li, Changle & Tunestål, Per & Tunér, Martin & Lu, Xingcai, 2020. "Effect of piston bowl geometry and compression ratio on in-cylinder combustion and engine performance in a gasoline direct-injection compression ignition engine under different injection conditions," Applied Energy, Elsevier, vol. 280(C).
    2. Shen, Zhaojie & Wang, Xinyan & Zhao, Hua & Lin, Bo & Shen, Yitao & Yang, Jianguo, 2021. "Numerical investigation of natural gas-diesel dual-fuel engine with different piston geometries and radial clearances," Energy, Elsevier, vol. 220(C).
    3. Pastor, José V. & García, Antonio & Micó, Carlos & Lewiski, Felipe & Vassallo, Alberto & Pesce, Francesco Concetto, 2021. "Effect of a novel piston geometry on the combustion process of a light-duty compression ignition engine: An optical analysis," Energy, Elsevier, vol. 221(C).
    4. Mofijur, M. & Rasul, M.G. & Hyde, J. & Azad, A.K. & Mamat, R. & Bhuiya, M.M.K., 2016. "Role of biofuel and their binary (diesel–biodiesel) and ternary (ethanol–biodiesel–diesel) blends on internal combustion engines emission reduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 265-278.
    5. Jaichandar, S. & Senthil Kumar, P. & Annamalai, K., 2012. "Combined effect of injection timing and combustion chamber geometry on the performance of a biodiesel fueled diesel engine," Energy, Elsevier, vol. 47(1), pages 388-394.
    6. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Bhuiya, M.M.K., 2016. "Recent development of biodiesel combustion strategies and modelling for compression ignition engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1068-1086.
    7. Jaichandar, S. & Annamalai, K., 2012. "Influences of re-entrant combustion chamber geometry on the performance of Pongamia biodiesel in a DI diesel engine," Energy, Elsevier, vol. 44(1), pages 633-640.
    8. Varun, & Singh, Paramvir & Tiwari, Samaresh Kumar & Singh, Rituparn & Kumar, Naresh, 2017. "Modification in combustion chamber geometry of CI engines for suitability of biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1016-1033.
    9. Abul Kalam Azad & Julian Adhikari & Pobitra Halder & Mohammad G. Rasul & Nur M. S. Hassan & Mohammad M. K. Khan & Salman Raza Naqvi & Karthickeyan Viswanathan, 2020. "Performance, Emission and Combustion Characteristics of a Diesel Engine Powered by Macadamia and Grapeseed Biodiesels," Energies, MDPI, vol. 13(11), pages 1-19, May.
    10. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K. & Hazrat, M.A., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel – Part 2: Properties, performance and emission characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1129-1146.
    11. Channappagoudra, Manjunath & Ramesh, K. & Manavendra, G., 2019. "Comparative study of standard engine and modified engine with different piston bowl geometries operated with B20 fuel blend," Renewable Energy, Elsevier, vol. 133(C), pages 216-232.
    12. Duan, Xiongbo & Zhang, Shiheng & Liu, Yiqun & Li, Yangtang & Liu, Jingping & Lai, Ming-Chia & Deng, Banglin, 2020. "Numerical investigation the effects of the twin-spark plugs coupled with EGR on the combustion process and emissions characteristics in a lean burn natural gas SI engine," Energy, Elsevier, vol. 206(C).
    13. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
    14. Venu, Harish & Raju, V. Dhana & Subramani, Lingesan, 2019. "Combined effect of influence of nano additives, combustion chamber geometry and injection timing in a DI diesel engine fuelled with ternary (diesel-biodiesel-ethanol) blends," Energy, Elsevier, vol. 174(C), pages 386-406.
    15. Lee, Seungpil & Park, Sungwook, 2017. "Optimization of the piston bowl geometry and the operating conditions of a gasoline-diesel dual-fuel engine based on a compression ignition engine," Energy, Elsevier, vol. 121(C), pages 433-448.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2021. "Combustion chamber modifications to improve diesel engine performance and reduce emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    2. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2023. "Advanced strategies to reduce harmful nitrogen-oxide emissions from biodiesel fueled engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    3. Karthickeyan, V., 2019. "Effect of combustion chamber bowl geometry modification on engine performance, combustion and emission characteristics of biodiesel fuelled diesel engine with its energy and exergy analysis," Energy, Elsevier, vol. 176(C), pages 830-852.
    4. Mahmudul, H.M. & Hagos, F.Y. & Mamat, R. & Adam, A. Abdul & Ishak, W.F.W. & Alenezi, R., 2017. "Production, characterization and performance of biodiesel as an alternative fuel in diesel engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 497-509.
    5. Goel, Varun & Kumar, Naresh & Singh, Paramvir, 2018. "Impact of modified parameters on diesel engine characteristics using biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2716-2729.
    6. T. M. Yunus Khan, 2020. "A Review of Performance-Enhancing Innovative Modifications in Biodiesel Engines," Energies, MDPI, vol. 13(17), pages 1-22, August.
    7. Md Mofijur Rahman & Mohammad Rasul & Nur Md Sayeed Hassan, 2017. "Study on the Tribological Characteristics of Australian Native First Generation and Second Generation Biodiesel Fuel," Energies, MDPI, vol. 10(1), pages 1-16, January.
    8. Hamid, M. Fadzli & Idroas, M. Yusof & Mazlan, M. & Sa'ad, S. & Teoh, Y.H. & Che Mat, S. & Miskam, M.A. & Abdullah, M.K., 2022. "Methods for improving the in-cylinder airflow characteristics for sustainable transportation using fuels with higher viscosity: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    9. Abul Kalam Azad & Mohammad Golam Rasul & Subhash Chandra Sharma & Mohammad Masud Kamal Khan, 2017. "The Lubricity of Ternary Fuel Mixture Blends as a Way to Assess Diesel Engine Durability," Energies, MDPI, vol. 11(1), pages 1-15, December.
    10. Rajaeifar, Mohammad Ali & Abdi, Reza & Tabatabaei, Meisam, 2017. "Expanded polystyrene waste application for improving biodiesel environmental performance parameters from life cycle assessment point of view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 278-298.
    11. A. K. Azad, 2017. "Biodiesel from Mandarin Seed Oil: A Surprising Source of Alternative Fuel," Energies, MDPI, vol. 10(11), pages 1-22, October.
    12. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Mamat, Rizalman & Sidik, Nor Azwadi Che & Azmi, W.H., 2017. "The effect of combustion management on diesel engine emissions fueled with biodiesel-diesel blends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 307-331.
    13. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
    14. Soudagar, Manzoore Elahi M. & Mujtaba, M.A. & Safaei, Mohammad Reza & Afzal, Asif & V, Dhana Raju & Ahmed, Waqar & Banapurmath, N.R. & Hossain, Nazia & Bashir, Shahid & Badruddin, Irfan Anjum & Goodar, 2021. "Effect of Sr@ZnO nanoparticles and Ricinus communis biodiesel-diesel fuel blends on modified CRDI diesel engine characteristics," Energy, Elsevier, vol. 215(PA).
    15. Zareh, Parvaneh & Zare, Ali Asghar & Ghobadian, Barat, 2017. "Comparative assessment of performance and emission characteristics of castor, coconut and waste cooking based biodiesel as fuel in a diesel engine," Energy, Elsevier, vol. 139(C), pages 883-894.
    16. Venu, Harish & Raju, V. Dhana & Subramani, Lingesan, 2019. "Combined effect of influence of nano additives, combustion chamber geometry and injection timing in a DI diesel engine fuelled with ternary (diesel-biodiesel-ethanol) blends," Energy, Elsevier, vol. 174(C), pages 386-406.
    17. Li, Xin & Luo, Xingyi & Jin, Yangbin & Li, Jinyan & Zhang, Hongdan & Zhang, Aiping & Xie, Jun, 2018. "Heterogeneous sulfur-free hydrodeoxygenation catalysts for selectively upgrading the renewable bio-oils to second generation biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3762-3797.
    18. Đurišić-Mladenović, Nataša & Kiss, Ferenc & Škrbić, Biljana & Tomić, Milan & Mićić, Radoslav & Predojević, Zlatica, 2018. "Current state of the biodiesel production and the indigenous feedstock potential in Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 280-291.
    19. Shen, Zhaojie & Wang, Xinyan & Zhao, Hua & Lin, Bo & Shen, Yitao & Yang, Jianguo, 2021. "Numerical investigation of natural gas-diesel dual-fuel engine with different piston geometries and radial clearances," Energy, Elsevier, vol. 220(C).
    20. Varun, & Singh, Paramvir & Tiwari, Samaresh Kumar & Singh, Rituparn & Kumar, Naresh, 2017. "Modification in combustion chamber geometry of CI engines for suitability of biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1016-1033.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2586-:d:1092251. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.