Numerical analysis on the advantages of evacuated gap insulation of vacuum-water flow window in building energy saving under various climates
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2019.03.101
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Cuce, Erdem & Riffat, Saffa B., 2015. "A state-of-the-art review on innovative glazing technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 695-714.
- Lyu, Yuan-Li & Chow, Tin-Tai & Wang, Jin-Liang, 2018. "Numerical prediction of thermal performance of liquid-flow window in different climates with anti-freeze," Energy, Elsevier, vol. 157(C), pages 412-423.
- Guo, Xiaofeng & Goumba, Alain Pascal, 2018. "Air source heat pump for domestic hot water supply: Performance comparison between individual and building scale installations," Energy, Elsevier, vol. 164(C), pages 794-802.
- Guo, Xiaofeng & Hendel, Martin, 2018. "Urban water networks as an alternative source for district heating and emergency heat-wave cooling," Energy, Elsevier, vol. 145(C), pages 79-87.
- Zhang, Chong & Gang, Wenjie & Wang, Jinbo & Xu, Xinhua & Du, Qianzhou, 2019. "Numerical and experimental study on the thermal performance improvement of a triple glazed window by utilizing low-grade exhaust air," Energy, Elsevier, vol. 167(C), pages 1132-1143.
- Memon, Saim & Fang, Yueping & Eames, Philip C., 2019. "The influence of low-temperature surface induction on evacuation, pump-out hole sealing and thermal performance of composite edge-sealed vacuum insulated glazing," Renewable Energy, Elsevier, vol. 135(C), pages 450-464.
- Al Touma, Albert & Ghali, Kamel & Ghaddar, Nesreen & Ismail, Nagham, 2016. "Solar chimney integrated with passive evaporative cooler applied on glazing surfaces," Energy, Elsevier, vol. 115(P1), pages 169-179.
- Ghosh, Aritra & Sundaram, Senthilarasu & Mallick, Tapas K., 2018. "Investigation of thermal and electrical performances of a combined semi-transparent PV-vacuum glazing," Applied Energy, Elsevier, vol. 228(C), pages 1591-1600.
- Wang, Cheng & Guo, Xiaofeng & Zhu, Ye, 2019. "Energy saving with Optic-Variable Wall for stable air temperature control," Energy, Elsevier, vol. 173(C), pages 38-47.
- Cuce, Erdem & Cuce, Pinar Mert, 2016. "Vacuum glazing for highly insulating windows: Recent developments and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1345-1357.
- Ghosh, Aritra & Norton, Brian & Duffy, Aidan, 2016. "Measured thermal & daylight performance of an evacuated glazing using an outdoor test cell," Applied Energy, Elsevier, vol. 177(C), pages 196-203.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Pu, Jihong & Shen, Chao & Lu, Lin, 2023. "Investigating the annual energy-saving and energy-output behaviors of a novel liquid-flow window with spectral regulation of ATO nanofluids," Energy, Elsevier, vol. 283(C).
- Michał Musiał & Lech Lichołai & Dušan Katunský, 2023. "Modern Thermal Energy Storage Systems Dedicated to Autonomous Buildings," Energies, MDPI, vol. 16(11), pages 1-28, May.
- Chen, Sihui & Lyu, Yuanli & Li, Chunying & Li, Xueyang & Yang, Wei & Wang, Ting, 2024. "Liquid flow glazing contributes to energy-efficient buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
- Zhou, Yuekuan & Zheng, Siqian, 2020. "Climate adaptive optimal design of an aerogel glazing system with the integration of a heuristic teaching-learning-based algorithm in machine learning-based optimization," Renewable Energy, Elsevier, vol. 153(C), pages 375-391.
- Lyu, Yuanli & Wang, Ting & Peng, Hao & Zheng, Shukui & Qi, Xuejun & Su, Hua & Chow, Tintai, 2023. "Experimental study on thermal performance of finned tube water flow window," Renewable Energy, Elsevier, vol. 219(P2).
- Pu, Jihong & Han, Miao & Lu, Lin & Shen, Chao & Wang, Fang, 2024. "Spectrally selective design and energy-saving demonstration of a novel liquid-filled window in hot and humid region," Energy, Elsevier, vol. 297(C).
- Chan, Lok Shun, 2023. "Numerical study on the thermal performance of water flow window fed with air-conditioning condensate," Energy, Elsevier, vol. 263(PB).
- Yadav, Somil & Hachem-Vermette, Caroline, 2024. "Performance evaluation of semitransparent PV window systems employing periodic thermal model," Applied Energy, Elsevier, vol. 353(PA).
- Li, Chunying & Tang, Haida, 2020. "Evaluation on year-round performance of double-circulation water-flow window," Renewable Energy, Elsevier, vol. 150(C), pages 176-190.
- Yamaç, Halil İbrahim & Koca, Ahmet, 2023. "Performance analysis of triple glazing water flow window systems during winter season," Energy, Elsevier, vol. 282(C).
- Guo, Wenwen & Kong, Li & Chow, Tintai & Li, Chunying & Zhu, Qunzhi & Qiu, Zhongzhu & Li, Lin & Wang, Yalin & Riffat, Saffa B., 2020. "Energy performance of photovoltaic (PV) windows under typical climates of China in terms of transmittance and orientation," Energy, Elsevier, vol. 213(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Huang, Junchao & Chen, Xi & Peng, Jinqing & Yang, Hongxing, 2021. "Modelling analyses of the thermal property and heat transfer performance of a novel compositive PV vacuum glazing," Renewable Energy, Elsevier, vol. 163(C), pages 1238-1252.
- Nundy, Srijita & Ghosh, Aritra, 2020. "Thermal and visual comfort analysis of adaptive vacuum integrated switchable suspended particle device window for temperate climate," Renewable Energy, Elsevier, vol. 156(C), pages 1361-1372.
- Xiaofeng Guo & Alain Pascal Goumba & Cheng Wang, 2019. "Comparison of Direct and Indirect Active Thermal Energy Storage Strategies for Large-Scale Solar Heating Systems," Energies, MDPI, vol. 12(10), pages 1-18, May.
- Wang, Cheng & Zhu, Ye & Guo, Xiaofeng, 2019. "Thermally responsive coating on building heating and cooling energy efficiency and indoor comfort improvement," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Liu, Changyu & Wu, Yangyang & Bian, Ji & Li, Dong & Liu, Xiaoyan, 2018. "Influence of PCM design parameters on thermal and optical performance of multi-layer glazed roof," Applied Energy, Elsevier, vol. 212(C), pages 151-161.
- Sanghoon Baek & Sangchul Kim, 2020. "Potential Effects of Vacuum Insulating Glazing Application for Reducing Greenhouse Gas Emission (GHGE) from Apartment Buildings in the Korean Capital Region," Energies, MDPI, vol. 13(11), pages 1-15, June.
- Qiu, Changyu & Yang, Hongxing, 2020. "Daylighting and overall energy performance of a novel semi-transparent photovoltaic vacuum glazing in different climate zones," Applied Energy, Elsevier, vol. 276(C).
- Zhang, Chong & Wang, Jinbo & Li, Liao & Gang, Wenjie, 2019. "Dynamic thermal performance and parametric analysis of a heat recovery building envelope based on air-permeable porous materials," Energy, Elsevier, vol. 189(C).
- Shabunko, Veronika & Badrinarayanan, Samyuktha & Pillai, Dhanup S., 2021. "Evaluation of in-situ thermal transmittance of innovative building integrated photovoltaic modules: Application to thermal performance assessment for green mark certification in the tropics," Energy, Elsevier, vol. 235(C).
- Yuanli Lyu & Sihui Chen & Can Liu & Jun Li & Chunying Li & Hua Su, 2022. "Thermal Characteristics Simulation of an Energy-Conserving Facade: Water Flow Window," Sustainability, MDPI, vol. 14(5), pages 1-22, February.
- Uddin, Md Muin & Wang, Chuyao & Zhang, Chengyan & Ji, Jie, 2022. "Investigating the energy-saving performance of a CdTe-based semi-transparent photovoltaic combined hybrid vacuum glazing window system," Energy, Elsevier, vol. 253(C).
- Qiong He & S. Thomas Ng & Md. Uzzal Hossain & Martin Skitmore, 2019. "Energy-Efficient Window Retrofit for High-Rise Residential Buildings in Different Climatic Zones of China," Sustainability, MDPI, vol. 11(22), pages 1-19, November.
- Majumdar, Rudrodip & Saha, Sandip K., 2019. "Effect of varying extent of PCM capsule filling on thermal stratification performance of a storage tank," Energy, Elsevier, vol. 178(C), pages 1-20.
- Tan, Yutong & Peng, Jinqing & Luo, Yimo & Luo, Zhengyi & Curcija, Charlie & Fang, Yueping, 2022. "Numerical heat transfer modeling and climate adaptation analysis of vacuum-photovoltaic glazing," Applied Energy, Elsevier, vol. 312(C).
- Selvaraj, Prabhakaran & Ghosh, Aritra & Mallick, Tapas K. & Sundaram, Senthilarasu, 2019. "Investigation of semi-transparent dye-sensitized solar cells for fenestration integration," Renewable Energy, Elsevier, vol. 141(C), pages 516-525.
- Xue, Puning & Jiang, Yi & Zhou, Zhigang & Chen, Xin & Fang, Xiumu & Liu, Jing, 2019. "Multi-step ahead forecasting of heat load in district heating systems using machine learning algorithms," Energy, Elsevier, vol. 188(C).
- Zhang, Chong & Gang, Wenjie & Wang, Jinbo & Xu, Xinhua & Du, Qianzhou, 2019. "Numerical and experimental study on the thermal performance improvement of a triple glazed window by utilizing low-grade exhaust air," Energy, Elsevier, vol. 167(C), pages 1132-1143.
- Alagar Karthick & Muthu Manokar Athikesavan & Manoj Kumar Pasupathi & Nallapaneni Manoj Kumar & Shauhrat S. Chopra & Aritra Ghosh, 2020. "Investigation of Inorganic Phase Change Material for a Semi-Transparent Photovoltaic (STPV) Module," Energies, MDPI, vol. 13(14), pages 1-12, July.
- Pu, Jihong & Han, Miao & Lu, Lin & Shen, Chao & Wang, Fang, 2024. "Spectrally selective design and energy-saving demonstration of a novel liquid-filled window in hot and humid region," Energy, Elsevier, vol. 297(C).
- Pu, Jihong & Shen, Chao & Lu, Lin, 2023. "Investigating the annual energy-saving and energy-output behaviors of a novel liquid-flow window with spectral regulation of ATO nanofluids," Energy, Elsevier, vol. 283(C).
More about this item
Keywords
Vacuum-water flow window; Thermal insulation; Heat flow; Water heat exchange; Glazing temperature;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:175:y:2019:i:c:p:353-364. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.