IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v41y2015icp695-714.html
   My bibliography  Save this article

A state-of-the-art review on innovative glazing technologies

Author

Listed:
  • Cuce, Erdem
  • Riffat, Saffa B.

Abstract

Buildings play an important role in greenhouse gas emissions since they constitute a large proportion of the global energy demand. This dramatic scenario is usually a consequence of poor thermal insulation characteristics of building fabric. Among the elements of a typical building envelope, windows are responsible for the greatest energy loss due to their notably high overall heat transfer coefficients (U-values). About 60% of heat loss through the fabric of residential buildings can be attributed to the glazed areas. Windows are useful multifunctional devices for buildings which provide passive solar gain, air ventilation and also the ability to view the outside. However, they greatly dominate the heating and cooling demand of buildings in winter and summer, respectively. Conventional window technologies tend to have poor U-values which cause significant heat losses during the winter season and undesired heat gain in summer. Unique glazing technologies are therefore required to improve visual and thermal comfort of the occupants, whilst mitigating the energy consumption of buildings. In the present work, a comprehensive review of the latest developments in glazing technologies is presented. Currently available high performance glazing products and technologies are analyzed in detail with application examples.

Suggested Citation

  • Cuce, Erdem & Riffat, Saffa B., 2015. "A state-of-the-art review on innovative glazing technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 695-714.
  • Handle: RePEc:eee:rensus:v:41:y:2015:i:c:p:695-714
    DOI: 10.1016/j.rser.2014.08.084
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032114007710
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2014.08.084?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robinson, P.D. & G Hutchins, M, 1994. "Advanced glazing technology for low energy buildings in the UK," Renewable Energy, Elsevier, vol. 5(1), pages 298-309.
    2. Buratti, C. & Moretti, E., 2012. "Glazing systems with silica aerogel for energy savings in buildings," Applied Energy, Elsevier, vol. 98(C), pages 396-403.
    3. Sadineni, Suresh B. & Madala, Srikanth & Boehm, Robert F., 2011. "Passive building energy savings: A review of building envelope components," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3617-3631.
    4. Buratti, C. & Moretti, E., 2012. "Experimental performance evaluation of aerogel glazing systems," Applied Energy, Elsevier, vol. 97(C), pages 430-437.
    5. Erdem Cuce & Tulin Bali & Suphi Anil Sekucoglu, 2011. "Effects of passive cooling on performance of silicon photovoltaic cells," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 6(4), pages 299-308, July.
    6. Bouden, Chiheb, 2007. "Influence of glass curtain walls on the building thermal energy consumption under Tunisian climatic conditions: The case of administrative buildings," Renewable Energy, Elsevier, vol. 32(1), pages 141-156.
    7. Li, Danny H.W & Lam, Joseph C, 2000. "Measurements of solar radiation and illuminance on vertical surfaces and daylighting implications," Renewable Energy, Elsevier, vol. 20(4), pages 389-404.
    8. Yohanis, Y. G. & Norton, B., 1999. "Utilization factor for building solar-heat gain for use in a simplified energy model," Applied Energy, Elsevier, vol. 63(4), pages 227-239, August.
    9. Li, Danny H.W. & Lau, Chris C.S. & Lam, Joseph C., 2005. "Predicting daylight illuminance on inclined surfaces using sky luminance data," Energy, Elsevier, vol. 30(9), pages 1649-1665.
    10. Aboulnaga, Mohsen M., 2006. "Towards green buildings: Glass as a building element—the use and misuse in the gulf region," Renewable Energy, Elsevier, vol. 31(5), pages 631-653.
    11. Hutchins, MG & Platzer, WJ, 1996. "The thermal performance of advanced glazing materials," Renewable Energy, Elsevier, vol. 8(1), pages 540-545.
    12. Han, Jun & Lu, Lin & Yang, Hongxing, 2010. "Numerical evaluation of the mixed convective heat transfer in a double-pane window integrated with see-through a-Si PV cells with low-e coatings," Applied Energy, Elsevier, vol. 87(11), pages 3431-3437, November.
    13. Alshaibani, Khalid, 2001. "Potentiality of daylighting in a maritime desert climate: the Eastern coast of Saudi Arabia," Renewable Energy, Elsevier, vol. 23(2), pages 325-331.
    14. Cuce, Erdem & Cuce, Pinar Mert & Wood, Christopher J. & Riffat, Saffa B., 2014. "Toward aerogel based thermal superinsulation in buildings: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 273-299.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cuce, Erdem & Harjunowibowo, Dewanto & Cuce, Pinar Mert, 2016. "Renewable and sustainable energy saving strategies for greenhouse systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 34-59.
    2. Abdul Mujeebu, Muhammad & Ashraf, Noman & Alsuwayigh, Abdulkarim H., 2016. "Effect of nano vacuum insulation panel and nanogel glazing on the energy performance of office building," Applied Energy, Elsevier, vol. 173(C), pages 141-151.
    3. Cuce, Erdem & Cuce, Pinar Mert & Wood, Christopher J. & Riffat, Saffa B., 2014. "Toward aerogel based thermal superinsulation in buildings: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 273-299.
    4. Gil-Lopez, Tomas & Gimenez-Molina, Carmen, 2013. "Environmental, economic and energy analysis of double glazing with a circulating water chamber in residential buildings," Applied Energy, Elsevier, vol. 101(C), pages 572-581.
    5. Ibrahim, Mohamad & Biwole, Pascal Henry & Achard, Patrick & Wurtz, Etienne & Ansart, Guillaume, 2015. "Building envelope with a new aerogel-based insulating rendering: Experimental and numerical study, cost analysis, and thickness optimization," Applied Energy, Elsevier, vol. 159(C), pages 490-501.
    6. Sun, Yanyi & Wilson, Robin & Wu, Yupeng, 2018. "A Review of Transparent Insulation Material (TIM) for building energy saving and daylight comfort," Applied Energy, Elsevier, vol. 226(C), pages 713-729.
    7. Cuce, Erdem & Cuce, Pinar Mert & Young, Chin-Huai, 2016. "Energy saving potential of heat insulation solar glass: Key results from laboratory and in-situ testing," Energy, Elsevier, vol. 97(C), pages 369-380.
    8. Abdul Mujeebu, Muhammad & Ashraf, Noman & Alsuwayigh, Abdulkarim, 2016. "Energy performance and economic viability of nano aerogel glazing and nano vacuum insulation panel in multi-story office building," Energy, Elsevier, vol. 113(C), pages 949-956.
    9. Berardi, Umberto, 2015. "The development of a monolithic aerogel glazed window for an energy retrofitting project," Applied Energy, Elsevier, vol. 154(C), pages 603-615.
    10. Singh, M.C. & Garg, S.N., 2010. "Illuminance estimation and daylighting energy savings for Indian regions," Renewable Energy, Elsevier, vol. 35(3), pages 703-711.
    11. Huang, Yu & Niu, Jian-lei, 2015. "Application of super-insulating translucent silica aerogel glazing system on commercial building envelope of humid subtropical climates – Impact on space cooling load," Energy, Elsevier, vol. 83(C), pages 316-325.
    12. Ghosh, Aritra & Norton, Brian, 2018. "Advances in switchable and highly insulating autonomous (self-powered) glazing systems for adaptive low energy buildings," Renewable Energy, Elsevier, vol. 126(C), pages 1003-1031.
    13. Cinzia Buratti & Elisa Moretti & Elisa Belloni & Fabrizio Agosti, 2014. "Development of Innovative Aerogel Based Plasters: Preliminary Thermal and Acoustic Performance Evaluation," Sustainability, MDPI, vol. 6(9), pages 1-14, September.
    14. Ghosh, Aritra & Norton, Brian & Duffy, Aidan, 2016. "Measured thermal performance of a combined suspended particle switchable device evacuated glazing," Applied Energy, Elsevier, vol. 169(C), pages 469-480.
    15. Paulos, Jason & Berardi, Umberto, 2020. "Optimizing the thermal performance of window frames through aerogel-enhancements," Applied Energy, Elsevier, vol. 266(C).
    16. Zhou, Yuekuan & Zheng, Siqian, 2020. "Uncertainty study on thermal and energy performances of a deterministic parameters based optimal aerogel glazing system using machine-learning method," Energy, Elsevier, vol. 193(C).
    17. Ghosh, Aritra & Norton, Brian & Duffy, Aidan, 2017. "Effect of sky clearness index on transmission of evacuated (vacuum) glazing," Renewable Energy, Elsevier, vol. 105(C), pages 160-166.
    18. Li, Danny H.W. & Lou, Siwei, 2018. "Review of solar irradiance and daylight illuminance modeling and sky classification," Renewable Energy, Elsevier, vol. 126(C), pages 445-453.
    19. Lin, Yi-Feng & Ko, Chia-Chieh & Chen, Chien-Hua & Tung, Kuo-Lun & Chang, Kai-Shiun & Chung, Tsair-Wang, 2014. "Sol–gel preparation of polymethylsilsesquioxane aerogel membranes for CO2 absorption fluxes in membrane contactors," Applied Energy, Elsevier, vol. 129(C), pages 25-31.
    20. Zhou, Yuekuan & Zheng, Siqian, 2020. "Climate adaptive optimal design of an aerogel glazing system with the integration of a heuristic teaching-learning-based algorithm in machine learning-based optimization," Renewable Energy, Elsevier, vol. 153(C), pages 375-391.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:41:y:2015:i:c:p:695-714. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.