IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v115y2016ip1p169-179.html
   My bibliography  Save this article

Solar chimney integrated with passive evaporative cooler applied on glazing surfaces

Author

Listed:
  • Al Touma, Albert
  • Ghali, Kamel
  • Ghaddar, Nesreen
  • Ismail, Nagham

Abstract

This study investigates the performance of a hybrid system applied on glazing surfaces for reducing the space cooling load and radiation asymmetry. The proposed system combines the principles of passive evaporative cooling with the natural buoyant flow in solar chimneys to entrain outdoor air and attenuate the window surface temperature. A predictive heat and mass transport model combining the evaporative cooler, glazing section, solar chimney and an office space is developed to study the system performance in harshly hot climates. The developed model was validated through experiments conducted in a twin climatic chamber for given ambient temperature, humidity, and solar radiation conditions. Good agreement was found between the measured and the predicted window temperatures and space loads at maximum discrepancy lower than 4.3%.

Suggested Citation

  • Al Touma, Albert & Ghali, Kamel & Ghaddar, Nesreen & Ismail, Nagham, 2016. "Solar chimney integrated with passive evaporative cooler applied on glazing surfaces," Energy, Elsevier, vol. 115(P1), pages 169-179.
  • Handle: RePEc:eee:energy:v:115:y:2016:i:p1:p:169-179
    DOI: 10.1016/j.energy.2016.09.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216312610
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.09.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Duen-Sheng & Hung, Tzu-Chen & Lin, Jaw-Ren & Zhao, Jun, 2015. "Experimental investigations on solar chimney for optimal heat collection to be utilized in organic Rankine cycle," Applied Energy, Elsevier, vol. 154(C), pages 651-662.
    2. Ye, Hong & Long, Linshuang & Zhang, Haitao & Gao, Yanfeng, 2014. "The energy saving index and the performance evaluation of thermochromic windows in passive buildings," Renewable Energy, Elsevier, vol. 66(C), pages 215-221.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lyu, Yuan-Li & Liu, Wen-Jie & Su, Hua & Wu, Xuan, 2019. "Numerical analysis on the advantages of evacuated gap insulation of vacuum-water flow window in building energy saving under various climates," Energy, Elsevier, vol. 175(C), pages 353-364.
    2. Tao, Yao & Fang, Xiang & Chew, Michael Yit Lin & Zhang, Lihai & Tu, Jiyuan & Shi, Long, 2021. "Predicting airflow in naturally ventilated double-skin facades: theoretical analysis and modelling," Renewable Energy, Elsevier, vol. 179(C), pages 1940-1954.
    3. Vargas-López, R. & Xamán, J. & Hernández-Pérez, I. & Arce, J. & Zavala-Guillén, I. & Jiménez, M.J. & Heras, M.R., 2019. "Mathematical models of solar chimneys with a phase change material for ventilation of buildings: A review using global energy balance," Energy, Elsevier, vol. 170(C), pages 683-708.
    4. Sergio L. González-González & Ana Tejero-González & Francisco J. Rey-Martínez & Manuel Andrés-Chicote, 2017. "Alternative for Summer Use of Solar Air Heaters in Existing Buildings," Energies, MDPI, vol. 10(7), pages 1-15, July.
    5. Tao, Yao & Zhang, Haihua & Huang, Dongmei & Fan, Chuangang & Tu, Jiyuan & Shi, Long, 2021. "Ventilation performance of a naturally ventilated double skin façade with low-e glazing," Energy, Elsevier, vol. 229(C).
    6. Zavala-Guillén, I. & Xamán, J. & Hernández-Pérez, I. & Hernández-Lopéz, I. & Gijón-Rivera, M. & Chávez, Y., 2018. "Numerical study of the optimum width of 2a diurnal double air-channel solar chimney," Energy, Elsevier, vol. 147(C), pages 403-417.
    7. Zhang, Chong & Gang, Wenjie & Wang, Jinbo & Xu, Xinhua & Du, Qianzhou, 2019. "Numerical and experimental study on the thermal performance improvement of a triple glazed window by utilizing low-grade exhaust air," Energy, Elsevier, vol. 167(C), pages 1132-1143.
    8. Al Touma, Albert & Ouahrani, Djamel, 2019. "Evaporatively-cooled façade integrated with photovoltaic thermal panel applied in hot and humid climates," Energy, Elsevier, vol. 172(C), pages 409-422.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bamorovat Abadi, Gholamreza & Kim, Kyung Chun, 2017. "Investigation of organic Rankine cycles with zeotropic mixtures as a working fluid: Advantages and issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1000-1013.
    2. Moss, R.W. & Henshall, P. & Arya, F. & Shire, G.S.F. & Hyde, T. & Eames, P.C., 2018. "Performance and operational effectiveness of evacuated flat plate solar collectors compared with conventional thermal, PVT and PV panels," Applied Energy, Elsevier, vol. 216(C), pages 588-601.
    3. Shi, Long, 2018. "Theoretical models for wall solar chimney under cooling and heating modes considering room configuration," Energy, Elsevier, vol. 165(PB), pages 925-938.
    4. Hu, Siyang & Leung, Dennis Y.C. & Chan, John C.Y., 2017. "Numerical modelling and comparison of the performance of diffuser-type solar chimneys for power generation," Applied Energy, Elsevier, vol. 204(C), pages 948-957.
    5. Sun, Hongchuang & Qin, Jiang & Hung, Tzu-Chen & Lin, Chih-Hung & Lin, Yi-Fan, 2018. "Performance comparison of organic Rankine cycle with expansion from superheated zone or two-phase zone based on temperature utilization rate of heat source," Energy, Elsevier, vol. 149(C), pages 566-576.
    6. Shi, Long, 2019. "Impacts of wind on solar chimney performance in a building," Energy, Elsevier, vol. 185(C), pages 55-67.
    7. Chwieduk, Dorota A., 2017. "Towards modern options of energy conservation in buildings," Renewable Energy, Elsevier, vol. 101(C), pages 1194-1202.
    8. Huang, Sheng & Li, Wuyan & Lu, Jun & Li, Yongcai & Wang, Zhihao & Zhu, Shaohui, 2024. "Experimental study on thermal performances of a solar chimney with and without PCM under different system inclination angles," Energy, Elsevier, vol. 290(C).
    9. Vargas-López, R. & Xamán, J. & Hernández-Pérez, I. & Arce, J. & Zavala-Guillén, I. & Jiménez, M.J. & Heras, M.R., 2019. "Mathematical models of solar chimneys with a phase change material for ventilation of buildings: A review using global energy balance," Energy, Elsevier, vol. 170(C), pages 683-708.
    10. Li, Chunying & Tang, Haida, 2020. "Evaluation on year-round performance of double-circulation water-flow window," Renewable Energy, Elsevier, vol. 150(C), pages 176-190.
    11. Shen, Yi & Xue, Peng & Luo, Tao & Zhang, Yanyun & Tso, Chi Yan & Zhang, Nan & Sun, Yuying & Xie, Jingchao & Liu, Jiaping, 2022. "Regional applicability of thermochromic windows based on dynamic radiation spectrum," Renewable Energy, Elsevier, vol. 196(C), pages 15-27.
    12. Varma, G.V. Pradeep & Srinivas, T., 2017. "Power generation from low temperature heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 402-414.
    13. Wenjie Zhang & Kangyong Liu & Shengbin Ma & Tongdan Gong & Yingbo Zhao, 2021. "The Influence of Photovoltaic Cell Coverage Rate on the Thermal and Electric Performance of Semi-Transparent Crystalline Silicon Photovoltaic Windows Based on the Dynamic Power Coupling Model," Energies, MDPI, vol. 14(21), pages 1-14, November.
    14. Sun, Hongchuang & Qin, Jiang & Hung, Tzu-Chen & Huang, Hongyan & Yan, Peigang, 2019. "Performance analysis of low speed axial impulse turbine using two type nozzles for small-scale organic Rankine cycle," Energy, Elsevier, vol. 169(C), pages 1139-1152.
    15. Long, Linshuang & Ye, Hong & Gao, Yanfeng & Zou, Ruqiang, 2014. "Performance demonstration and evaluation of the synergetic application of vanadium dioxide glazing and phase change material in passive buildings," Applied Energy, Elsevier, vol. 136(C), pages 89-97.
    16. Al Touma, Albert & Ouahrani, Djamel, 2019. "Evaporatively-cooled façade integrated with photovoltaic thermal panel applied in hot and humid climates," Energy, Elsevier, vol. 172(C), pages 409-422.
    17. Bai, Yijie & He, Yurong, 2022. "Enhanced solar modulation ability of smart windows based on hydroxypropyl cellulose mixed with nonionic surfactants," Renewable Energy, Elsevier, vol. 198(C), pages 749-759.
    18. Guo, Wenwen & Kong, Li & Chow, Tintai & Li, Chunying & Zhu, Qunzhi & Qiu, Zhongzhu & Li, Lin & Wang, Yalin & Riffat, Saffa B., 2020. "Energy performance of photovoltaic (PV) windows under typical climates of China in terms of transmittance and orientation," Energy, Elsevier, vol. 213(C).
    19. Milani Shirvan, Kamel & Mirzakhanlari, Soroush & Mamourian, Mojtaba & Kalogirou, Soteris A., 2017. "Optimization of effective parameters on solar updraft tower to achieve potential maximum power output: A sensitivity analysis and numerical simulation," Applied Energy, Elsevier, vol. 195(C), pages 725-737.
    20. Xiaodong Wang & Yinan Yang & Xiaoyu Li & Chunying Li, 2022. "Modeling, Simulation, and Performance Analysis of a Liquid-Infill Tunable Window," Sustainability, MDPI, vol. 14(23), pages 1-22, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:115:y:2016:i:p1:p:169-179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.