IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v376y2024ipbs0306261924017069.html
   My bibliography  Save this article

Solar PV vacuum glazing (SVG) insulated building facades: Thermal and electrical performances

Author

Listed:
  • Zhou, Hao
  • Yang, Hongxing
  • Peng, Jinqing

Abstract

As fire emergencies and energy saving demand of buildings have grown around the globe, concerns have been raised about the flammability of conventional external insulation materials in cold weather areas. In this paper, solar PV vacuum glazing (SVG) was proposed as a promising alternative to traditional external insulation layers of buildings due to its incombustible nature and superior thermal insulation performance. To assess the thermal and electrical performances of SVG-insulated facades, a heat transfer model and an effective absorptance calculation model for SVG-insulated façades were developed and validated against experimental data. Results showed that SVG-insulated facades exhibited significantly lower U values, ranging from 44.1% to 47.5% less than those of traditional concrete walls (without insulation layer). Additionally, the application of Low-emissivity (Low-e) coatings on the glazing could further reduce the U value from 2.05 W/(m2·K) to 0.647 W/(m2·K), making SVG-insulated facades competitive with traditional insulation walls. The secondary heat transfer factor (SHTF), defined as the ratio of indoor heat gain from solar radiation absorbed by building facades to incident solar radiation, was also reported for SVG-insulated facades with different solar cells (C-si, A-si, and CdTe), along with their respective efficiencies. Parametric analyses of eight parameters subsequently highlighted that their influence on the thermal performance of SVG-insulated façades was much greater than on the solar cell efficiency. Furthermore, considering the combined effect of optimal value of key influencing parameters, the lowest U value of 0.153 W/(m2·K) could be achieved, which represents approximately 24.6% of the U value of traditional insulation walls. This study provides compelling evidence for the adoption of SVG-insulated facades as replacements for traditional insulation walls and offers insights into optimizing their thermal performance.

Suggested Citation

  • Zhou, Hao & Yang, Hongxing & Peng, Jinqing, 2024. "Solar PV vacuum glazing (SVG) insulated building facades: Thermal and electrical performances," Applied Energy, Elsevier, vol. 376(PB).
  • Handle: RePEc:eee:appene:v:376:y:2024:i:pb:s0306261924017069
    DOI: 10.1016/j.apenergy.2024.124323
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924017069
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124323?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:376:y:2024:i:pb:s0306261924017069. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.