IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v191y2024ics1364032123009450.html
   My bibliography  Save this article

Liquid flow glazing contributes to energy-efficient buildings: A review

Author

Listed:
  • Chen, Sihui
  • Lyu, Yuanli
  • Li, Chunying
  • Li, Xueyang
  • Yang, Wei
  • Wang, Ting

Abstract

This work gives a precise review of the researches completed on the energy conservation characteristics of liquid flow glazing. Its energy saving and environmental benefits under various design and operation conditions, contributions with renewable energy utilization, as well as application in zero energy buildings are timely explored and summarized. Its advantages lie in the reduction of thermal transmission between the indoor and outdoor environments, the beneficial thermal collection, and the tactful utilization of renewable energy. The optical and thermal properties, as well as the energy performance of liquid flow glazing were found much affected by the glazing and fluid properties, the window configuration, and the operating conditions. These are consequently linked to the degree of electricity saving, the decrease in atmospheric CO2 emission, and the shortened life cycle payback time. The integrated use of solar and geothermal energy in liquid flow glazing systems is also addressed. This leads to more practical studies on the applications in zero energy buildings, such as control, real-time monitoring, and energy management strategies of liquid flow glazing system. In essence, the development of an evaluation platform or database, with systemic classification of liquid flow glazing categories plus the corresponding graded energy saving characteristics, is deemed helpful to the building professionals in meeting the zero energy buildings development targets.

Suggested Citation

  • Chen, Sihui & Lyu, Yuanli & Li, Chunying & Li, Xueyang & Yang, Wei & Wang, Ting, 2024. "Liquid flow glazing contributes to energy-efficient buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
  • Handle: RePEc:eee:rensus:v:191:y:2024:i:c:s1364032123009450
    DOI: 10.1016/j.rser.2023.114087
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123009450
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.114087?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luo, Yongqiang & Zhang, Ling & Bozlar, Michael & Liu, Zhongbing & Guo, Hongshan & Meggers, Forrest, 2019. "Active building envelope systems toward renewable and sustainable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 470-491.
    2. Belen Moreno Santamaria & Fernando del Ama Gonzalo & Matthew Griffin & Benito Lauret Aguirregabiria & Juan A. Hernandez Ramos, 2021. "Life Cycle Assessment of Dynamic Water Flow Glazing Envelopes: A Case Study with Real Test Facilities," Energies, MDPI, vol. 14(8), pages 1-17, April.
    3. Guo, Siyue & Yan, Da & Hu, Shan & Zhang, Yang, 2021. "Modelling building energy consumption in China under different future scenarios," Energy, Elsevier, vol. 214(C).
    4. Lyu, Yuan-Li & Liu, Wen-Jie & Su, Hua & Wu, Xuan, 2019. "Numerical analysis on the advantages of evacuated gap insulation of vacuum-water flow window in building energy saving under various climates," Energy, Elsevier, vol. 175(C), pages 353-364.
    5. Zhaocheng Li & Yu Song, 2022. "Energy Consumption Linkages of the Chinese Construction Sector," Energies, MDPI, vol. 15(5), pages 1-13, February.
    6. Ürge-Vorsatz, Diana & Cabeza, Luisa F. & Serrano, Susana & Barreneche, Camila & Petrichenko, Ksenia, 2015. "Heating and cooling energy trends and drivers in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 85-98.
    7. Belen Moreno Santamaria & Fernando del Ama Gonzalo & Benito Lauret Aguirregabiria & Juan A. Hernandez Ramos, 2020. "Experimental Validation of Water Flow Glazing: Transient Response in Real Test Rooms," Sustainability, MDPI, vol. 12(14), pages 1-24, July.
    8. Belen Moreno Santamaria & Fernando del Ama Gonzalo & Danielle Pinette & Benito Lauret Aguirregabiria & Juan A. Hernandez Ramos, 2020. "Industrialization and Thermal Performance of a New Unitized Water Flow Glazing Facade," Sustainability, MDPI, vol. 12(18), pages 1-22, September.
    9. Belen Moreno Santamaria & Fernando del Ama Gonzalo & Benito Lauret Aguirregabiria & Juan A. Hernandez Ramos, 2020. "Evaluation of Thermal Comfort and Energy Consumption of Water Flow Glazing as a Radiant Heating and Cooling System: A Case Study of an Office Space," Sustainability, MDPI, vol. 12(18), pages 1-27, September.
    10. Belen Moreno Santamaria & Fernando del Ama Gonzalo & Danielle Pinette & Roberto-Alonso Gonzalez-Lezcano & Benito Lauret Aguirregabiria & Juan A. Hernandez Ramos, 2020. "Application and Validation of a Dynamic Energy Simulation Tool: A Case Study with Water Flow Glazing Envelope," Energies, MDPI, vol. 13(12), pages 1-20, June.
    11. Lyu, Yuanli & Liu, Wenjie & Chow, Tin-tai & Su, Hua & Qi, Xuejun, 2019. "Pipe-work optimization of water flow window," Renewable Energy, Elsevier, vol. 139(C), pages 136-146.
    12. Lyu, Yuan-Li & Chow, Tin-Tai & Wang, Jin-Liang, 2018. "Numerical prediction of thermal performance of liquid-flow window in different climates with anti-freeze," Energy, Elsevier, vol. 157(C), pages 412-423.
    13. Aburas, Marina & Soebarto, Veronica & Williamson, Terence & Liang, Runqi & Ebendorff-Heidepriem, Heike & Wu, Yupeng, 2019. "Thermochromic smart window technologies for building application: A review," Applied Energy, Elsevier, vol. 255(C).
    14. Yuanli Lyu & Sihui Chen & Can Liu & Jun Li & Chunying Li & Hua Su, 2022. "Thermal Characteristics Simulation of an Energy-Conserving Facade: Water Flow Window," Sustainability, MDPI, vol. 14(5), pages 1-22, February.
    15. Fernando del Ama Gonzalo & Belen Moreno Santamaria & José Antonio Ferrándiz Gea & Matthew Griffin & Juan A. Hernandez Ramos, 2021. "Zero Energy Building Economic and Energetic Assessment with Simulated and Real Data Using Photovoltaics and Water Flow Glazing," Energies, MDPI, vol. 14(11), pages 1-20, June.
    16. Claros-Marfil, Luis J. & Padial, J. Francisco & Lauret, Benito, 2016. "A new and inexpensive open source data acquisition and controller for solar research: Application to a water-flow glazing," Renewable Energy, Elsevier, vol. 92(C), pages 450-461.
    17. Liu, Wenjie & Chow, Tin-tai, 2021. "Performance analysis of liquid-flow-window with submerged heat exchanger," Renewable Energy, Elsevier, vol. 168(C), pages 319-331.
    18. Li, Chunying & Tang, Haida, 2020. "Evaluation on year-round performance of double-circulation water-flow window," Renewable Energy, Elsevier, vol. 150(C), pages 176-190.
    19. Gil-Lopez, Tomas & Gimenez-Molina, Carmen, 2013. "Environmental, economic and energy analysis of double glazing with a circulating water chamber in residential buildings," Applied Energy, Elsevier, vol. 101(C), pages 572-581.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Guangpeng & Wu, Huijun & Liu, Jia & Liu, Yanchen & Ding, Yujie & Huang, Huakun, 2024. "A review on switchable building envelopes for low-energy buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lyu, Yuanli & Wang, Ting & Peng, Hao & Zheng, Shukui & Qi, Xuejun & Su, Hua & Chow, Tintai, 2023. "Experimental study on thermal performance of finned tube water flow window," Renewable Energy, Elsevier, vol. 219(P2).
    2. Belen Moreno Santamaria & Fernando del Ama Gonzalo & Matthew Griffin & Benito Lauret Aguirregabiria & Juan A. Hernandez Ramos, 2021. "Life Cycle Assessment of Dynamic Water Flow Glazing Envelopes: A Case Study with Real Test Facilities," Energies, MDPI, vol. 14(8), pages 1-17, April.
    3. Fernando del Ama Gonzalo & Belén Moreno Santamaría & Juan A. Hernández Ramos, 2022. "Assessment of Water Flow Glazing as Building-Integrated Solar Thermal Collector," Sustainability, MDPI, vol. 15(1), pages 1-21, December.
    4. Chan, Lok Shun, 2023. "Numerical study on the thermal performance of water flow window fed with air-conditioning condensate," Energy, Elsevier, vol. 263(PB).
    5. Saman Abolghasemi Moghaddam & Catarina Serra & Manuel Gameiro da Silva & Nuno Simões, 2023. "Comprehensive Review and Analysis of Glazing Systems towards Nearly Zero-Energy Buildings: Energy Performance, Thermal Comfort, Cost-Effectiveness, and Environmental Impact Perspectives," Energies, MDPI, vol. 16(17), pages 1-30, August.
    6. Yamaç, Halil İbrahim & Koca, Ahmet, 2023. "Performance analysis of triple glazing water flow window systems during winter season," Energy, Elsevier, vol. 282(C).
    7. Fernando del Ama Gonzalo & Belen Moreno Santamaria & José Antonio Ferrándiz Gea & Matthew Griffin & Juan A. Hernandez Ramos, 2021. "Zero Energy Building Economic and Energetic Assessment with Simulated and Real Data Using Photovoltaics and Water Flow Glazing," Energies, MDPI, vol. 14(11), pages 1-20, June.
    8. Belen Moreno Santamaria & Fernando del Ama Gonzalo & Benito Lauret Aguirregabiria & Juan A. Hernandez Ramos, 2020. "Experimental Validation of Water Flow Glazing: Transient Response in Real Test Rooms," Sustainability, MDPI, vol. 12(14), pages 1-24, July.
    9. Xiaodong Wang & Yinan Yang & Xiaoyu Li & Chunying Li, 2022. "Modeling, Simulation, and Performance Analysis of a Liquid-Infill Tunable Window," Sustainability, MDPI, vol. 14(23), pages 1-22, November.
    10. Pu, Jihong & Han, Miao & Lu, Lin & Shen, Chao & Wang, Fang, 2024. "Spectrally selective design and energy-saving demonstration of a novel liquid-filled window in hot and humid region," Energy, Elsevier, vol. 297(C).
    11. Pu, Jihong & Shen, Chao & Lu, Lin, 2023. "Investigating the annual energy-saving and energy-output behaviors of a novel liquid-flow window with spectral regulation of ATO nanofluids," Energy, Elsevier, vol. 283(C).
    12. Belen Moreno Santamaria & Fernando del Ama Gonzalo & Danielle Pinette & Benito Lauret Aguirregabiria & Juan A. Hernandez Ramos, 2020. "Industrialization and Thermal Performance of a New Unitized Water Flow Glazing Facade," Sustainability, MDPI, vol. 12(18), pages 1-22, September.
    13. Belen Moreno Santamaria & Fernando del Ama Gonzalo & Benito Lauret Aguirregabiria & Juan A. Hernandez Ramos, 2020. "Evaluation of Thermal Comfort and Energy Consumption of Water Flow Glazing as a Radiant Heating and Cooling System: A Case Study of an Office Space," Sustainability, MDPI, vol. 12(18), pages 1-27, September.
    14. Liu, Wenjie & Chow, Tin-tai, 2021. "Performance analysis of liquid-flow-window with submerged heat exchanger," Renewable Energy, Elsevier, vol. 168(C), pages 319-331.
    15. Jungwon Yoon & Sanghyun Bae, 2020. "Performance Evaluation and Design of Thermo-Responsive SMP Shading Prototypes," Sustainability, MDPI, vol. 12(11), pages 1-35, May.
    16. Yuanli Lyu & Sihui Chen & Can Liu & Jun Li & Chunying Li & Hua Su, 2022. "Thermal Characteristics Simulation of an Energy-Conserving Facade: Water Flow Window," Sustainability, MDPI, vol. 14(5), pages 1-22, February.
    17. Li, Chunying & Tang, Haida, 2020. "Evaluation on year-round performance of double-circulation water-flow window," Renewable Energy, Elsevier, vol. 150(C), pages 176-190.
    18. Shen, Yi & Xue, Peng & Luo, Tao & Zhang, Yanyun & Tso, Chi Yan & Zhang, Nan & Sun, Yuying & Xie, Jingchao & Liu, Jiaping, 2022. "Regional applicability of thermochromic windows based on dynamic radiation spectrum," Renewable Energy, Elsevier, vol. 196(C), pages 15-27.
    19. Zhang, Guangpeng & Wu, Huijun & Liu, Jia & Liu, Yanchen & Ding, Yujie & Huang, Huakun, 2024. "A review on switchable building envelopes for low-energy buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    20. Lyu, Yuanli & Liu, Wenjie & Chow, Tin-tai & Su, Hua & Qi, Xuejun, 2019. "Pipe-work optimization of water flow window," Renewable Energy, Elsevier, vol. 139(C), pages 136-146.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:191:y:2024:i:c:s1364032123009450. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.