IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v174y2019icp861-872.html
   My bibliography  Save this article

Quantitative prediction of oil and gas prospects of the Sinian-Lower Paleozoic in the Sichuan Basin in central China

Author

Listed:
  • Wang, Wenyang
  • Pang, Xiongqi
  • Chen, Zhangxin
  • Chen, Dongxia
  • Zheng, Tianyu
  • Luo, Bing
  • Li, Jing
  • Yu, Rui

Abstract

Reliably and conveniently predicting oil and gas prospects and avoiding costly drilling mistakes are the goals pursued by oil explorers and companies. In 2013, the Anyue gas field was discovered in Sichuan Basin, and it was the first discovery of a giant natural gas field in Precambrian strata attracting extensive attention since then. However, the complexity of geology in the Sinian-Lower Paleozoic makes prediction of oil and gas prospects very challenging. Based on the comprehensive review of the Anyue gas field, we identify four functional elements, i.e., a source kitchen (S), paleo-uplift (U), reservoir depositional facies (D), and regional cap rock (C). The combination of these four functional elements in time and space (T- CDUS) controls the Sinian-Lower Paleozoic hydrocarbon accumulation. The probability for hydrocarbon accumulation is determined by a proposed index, Tcdus. As a tectonic movement can damage oil and gas reservoirs formed prior to the movement, a model for calculating the hydrocarbon reservoir preservation probability is also established. The oil and gas prospects in Sinian-Lower Paleozoic are predicted with the combination of the hydrocarbon accumulation and preservation model. 137 wells drilled in the Sichuan Basin show that 88.9% of the successful wells are distributed in the predicted zones.

Suggested Citation

  • Wang, Wenyang & Pang, Xiongqi & Chen, Zhangxin & Chen, Dongxia & Zheng, Tianyu & Luo, Bing & Li, Jing & Yu, Rui, 2019. "Quantitative prediction of oil and gas prospects of the Sinian-Lower Paleozoic in the Sichuan Basin in central China," Energy, Elsevier, vol. 174(C), pages 861-872.
  • Handle: RePEc:eee:energy:v:174:y:2019:i:c:p:861-872
    DOI: 10.1016/j.energy.2019.03.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219304220
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.03.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luo, Dongkun & Zhao, Xu, 2012. "Modeling the operating costs for petroleum exploration and development projects," Energy, Elsevier, vol. 40(1), pages 189-195.
    2. Chen, Shangbin & Zhu, Yanming & Wang, Hongyan & Liu, Honglin & Wei, Wei & Fang, Junhua, 2011. "Shale gas reservoir characterisation: A typical case in the southern Sichuan Basin of China," Energy, Elsevier, vol. 36(11), pages 6609-6616.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Yongge & Liu, Xiaoyu & Hou, Jian & Li, Huazhou Andy & Liu, Yueliang & Chen, Zhangxin, 2019. "Technical and economic feasibility of a novel heavy oil recovery method: Geothermal energy assisted heavy oil recovery," Energy, Elsevier, vol. 181(C), pages 853-867.
    2. Wang, Wenyang & Pang, Xiongqi & Chen, Zhangxin & Chen, Dongxia & Ma, Xinhua & Zhu, Weiping & Zheng, Tianyu & Wu, Keliu & Zhang, Kun & Ma, Kuiyou, 2020. "Improved methods for determining effective sandstone reservoirs and evaluating hydrocarbon enrichment in petroliferous basins," Applied Energy, Elsevier, vol. 261(C).
    3. Wang, Fuwei & Chen, Dongxia & Li, Meijun & Chen, Zhangxin & Wang, Qiaochu & Jiang, Mengya & Rong, Lanxi & Wang, Yuqi & Li, Sha & Iltaf, Khawaja Hasnain & Wanma, Renzeng & Liu, Chen, 2024. "A novel method for predicting shallow hydrocarbon accumulation based on source-fault-sand (S-F-Sd) evaluation and ensemble neural network (ENN)," Applied Energy, Elsevier, vol. 359(C).
    4. Li, Jing & Wu, Keliu & Chen, Zhangxin & Wang, Wenyang & Yang, Bin & Wang, Kun & Luo, Jia & Yu, Renjie, 2019. "Effects of energetic heterogeneity on gas adsorption and gas storage in geologic shale systems," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    5. Wang, Wenyang & Pang, Xiongqi & Chen, Zhangxin & Chen, Dongxia & Wang, Yaping & Yang, Xuan & Luo, Bing & Zhang, Wang & Zhang, Xinwen & Li, Changrong & Wang, Qifeng & Li, Caijun, 2021. "Quantitative evaluation of transport efficiency of fault-reservoir composite migration pathway systems in carbonate petroliferous basins," Energy, Elsevier, vol. 222(C).
    6. Erdong Yao & Hang Xu & Yuan Li & Xuesong Ren & Hao Bai & Fujian Zhou, 2021. "Reusing Flowback and Produced Water with Different Salinity to Prepare Guar Fracturing Fluid," Energies, MDPI, vol. 15(1), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Wenyang & Pang, Xiongqi & Chen, Zhangxin & Chen, Dongxia & Wang, Yaping & Yang, Xuan & Luo, Bing & Zhang, Wang & Zhang, Xinwen & Li, Changrong & Wang, Qifeng & Li, Caijun, 2021. "Quantitative evaluation of transport efficiency of fault-reservoir composite migration pathway systems in carbonate petroliferous basins," Energy, Elsevier, vol. 222(C).
    2. Yin, Hong & Zhou, Junping & Xian, Xuefu & Jiang, Yongdong & Lu, Zhaohui & Tan, Jingqiang & Liu, Guojun, 2017. "Experimental study of the effects of sub- and super-critical CO2 saturation on the mechanical characteristics of organic-rich shales," Energy, Elsevier, vol. 132(C), pages 84-95.
    3. Xiaoyan Zou & Xianqing Li & Jizhen Zhang & Huantong Li & Man Guo & Pei Zhao, 2021. "Characteristics of Pore Structure and Gas Content of the Lower Paleozoic Shale from the Upper Yangtze Plate, South China," Energies, MDPI, vol. 14(22), pages 1-29, November.
    4. Qin, Chao & Jiang, Yongdong & Zuo, Shuangying & Chen, Shiwan & Xiao, Siyou & Liu, Zhengjie, 2021. "Investigation of adsorption kinetics of CH4 and CO2 on shale exposure to supercritical CO2," Energy, Elsevier, vol. 236(C).
    5. Chen, Junqing & Jiang, Fujie & Cong, Qi & Pang, Xiongqi & Ma, Kuiyou & Shi, Kanyuan & Pang, Bo & Chen, Dongxia & Pang, Hong & Yang, Xiaobin & Wang, Yuying & Li, Bingyao, 2023. "Adsorption characteristics of shale gas in organic–inorganic slit pores," Energy, Elsevier, vol. 278(C).
    6. Zhiyao Zhang & Shang Xu & Qiyang Gou & Qiqi Li, 2022. "Reservoir Characteristics and Resource Potential of Marine Shale in South China: A Review," Energies, MDPI, vol. 15(22), pages 1-21, November.
    7. Yuanyuan Tian & Qing Chen & Changhui Yan & Hongde Chen & Yanqing He & Yufeng He, 2022. "A New Adsorption Equation for Nano-Porous Shale Rocks and Its Application in Pore Size Distribution Analysis," Energies, MDPI, vol. 15(9), pages 1-13, April.
    8. Nemet, Andreja & Klemeš, Jiří Jaromír & Kravanja, Zdravko, 2013. "Optimising entire lifetime economy of heat exchanger networks," Energy, Elsevier, vol. 57(C), pages 222-235.
    9. Gou, Qiyang & Xu, Shang & Hao, Fang & Yang, Feng & Shu, Zhiguo & Liu, Rui, 2021. "The effect of tectonic deformation and preservation condition on the shale pore structure using adsorption-based textural quantification and 3D image observation," Energy, Elsevier, vol. 219(C).
    10. Yang, Xu & Zhou, Wenning & Liu, Xunliang & Yan, Yuying, 2020. "A multiscale approach for simulation of shale gas transport in organic nanopores," Energy, Elsevier, vol. 210(C).
    11. Dai, Xuguang & Wei, Chongtao & Wang, Meng & Ma, Ruying & Song, Yu & Zhang, Junjian & Wang, Xiaoqi & Shi, Xuan & Vandeginste, Veerle, 2023. "Interaction mechanism of supercritical CO2 with shales and a new quantitative storage capacity evaluation method," Energy, Elsevier, vol. 264(C).
    12. Wensong Huang & Ping Wang & Gang Hui & Xiangwen Kong & Yuepeng Jia & Lei Huang & Yufei Bai & Zhiyang Pi & Ye Li & Fuyu Yao & Penghu Bao & Yujie Zhang, 2024. "Unconventional Fracture Networks Simulation and Shale Gas Production Prediction by Integration of Petrophysics, Geomechanics and Fracture Characterization," Energies, MDPI, vol. 17(20), pages 1-16, October.
    13. Wang, Sha & Jiang, Xiumin & Han, Xiangxin & Tong, Jianhui, 2012. "Investigation of Chinese oil shale resources comprehensive utilization performance," Energy, Elsevier, vol. 42(1), pages 224-232.
    14. Bo Xu & Lianyong Feng & William X. Wei & Yan Hu & Jianliang Wang, 2014. "A Preliminary Forecast of the Production Status of China’s Daqing Oil field from the Perspective of EROI," Sustainability, MDPI, vol. 6(11), pages 1-21, November.
    15. Bryan X. Medina-Rodriguez & Vladimir Alvarado, 2021. "Use of Gas Adsorption and Inversion Methods for Shale Pore Structure Characterization," Energies, MDPI, vol. 14(10), pages 1-24, May.
    16. Lu, Yiyu & Chen, Xiayu & Tang, Jiren & Li, Honglian & Zhou, Lei & Han, Shuaibin & Ge, Zhaolong & Xia, Binwei & Shen, Huajian & Zhang, Jing, 2019. "Relationship between pore structure and mechanical properties of shale on supercritical carbon dioxide saturation," Energy, Elsevier, vol. 172(C), pages 270-285.
    17. Hui, Gang & Chen, Zhangxin & Wang, Youjing & Zhang, Dongmei & Gu, Fei, 2023. "An integrated machine learning-based approach to identifying controlling factors of unconventional shale productivity," Energy, Elsevier, vol. 266(C).
    18. Mihail Nikolaevich Dudin & Nikolaj Vasilevich Lyasnikov & Vladimir Dmitriyevich Sekerin & Anna Evgenevna Gorohova & Vyacheslav Viktorovich Burlakov, 2016. "Provision of Energy Security at the National Level in the Context of the Global Gas Transportation Industry Development," International Journal of Energy Economics and Policy, Econjournals, vol. 6(2), pages 234-242.
    19. Qin, Chao & Jiang, Yongdong & Luo, Yahuang & Zhou, Junping & Liu, Hao & Song, Xiao & Li, Dong & Zhou, Feng & Xie, Yingliang, 2020. "Effect of supercritical CO2 saturation pressures and temperatures on the methane adsorption behaviours of Longmaxi shale," Energy, Elsevier, vol. 206(C).
    20. Zhifeng Zhang & Yongjian Huang & Bo Ran & Wei Liu & Xiang Li & Chengshan Wang, 2021. "Chemostratigraphic Analysis of Wufeng and Longmaxi Formation in Changning, Sichuan, China: Achieved by Principal Component and Constrained Clustering Analysis," Energies, MDPI, vol. 14(21), pages 1-21, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:174:y:2019:i:c:p:861-872. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.