IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v40y2012i1p189-195.html
   My bibliography  Save this article

Modeling the operating costs for petroleum exploration and development projects

Author

Listed:
  • Luo, Dongkun
  • Zhao, Xu

Abstract

Since the operating cost is among the most sensitive factors to uncertainties in economic evaluation of petroleum exploration and development projects, scientific prediction of the operating cost plays an important role in accurately evaluating the viability of projects. This paper establishes the operating cost prediction model based on production decline law and learning curves through analyzing the impact of resource depletion and technological advances on unit operating cost. This analysis quantifies the effects of both learning and depletion on operating costs, and also introduces an assessment of the economic limit of stimulation treatments, which is set by comparing the unit operating cost before and after the treatments are taken. The results show the effect of resource depletion overwhelming that of technological advances for a single oilfield, and thus the operating cost is increasing over its life cycle. The influence of each parameter on the operating cost is examined, the unit operating cost in plateau phase having the largest influence. Over time, the effect of constant decline rate of the exponential decline is gradually overtaking that of unit operating cost. This model is applied in several oilfields in Tunisia, and all the exam results meet accuracy requirements.

Suggested Citation

  • Luo, Dongkun & Zhao, Xu, 2012. "Modeling the operating costs for petroleum exploration and development projects," Energy, Elsevier, vol. 40(1), pages 189-195.
  • Handle: RePEc:eee:energy:v:40:y:2012:i:1:p:189-195
    DOI: 10.1016/j.energy.2012.02.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544212001004
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2012.02.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Krautkraemer, Jeffrey A. & Toman, Michael, 2003. "Fundamental Economics of Depletable Energy Supply," Discussion Papers 10842, Resources for the Future.
    2. Méjean, Aurélie & Hope, Chris, 2008. "Modelling the costs of non-conventional oil: A case study of Canadian bitumen," Energy Policy, Elsevier, vol. 36(11), pages 4205-4216, November.
    3. Argote, L. & Epple, D., 1990. "Learning Curves In Manufacturing," GSIA Working Papers 89-90-02, Carnegie Mellon University, Tepper School of Business.
    4. Kaiser, Mark J., 2009. "Hydrocarbon production forecast for committed assets in the shallow water Outer Continental Shelf of the Gulf of Mexico," Energy, Elsevier, vol. 34(11), pages 1813-1825.
    5. K. J. Arrow, 1971. "The Economic Implications of Learning by Doing," Palgrave Macmillan Books, in: F. H. Hahn (ed.), Readings in the Theory of Growth, chapter 11, pages 131-149, Palgrave Macmillan.
    6. Cutler J. Cleveland & Robert K. Kaufmann, 1991. "Forecasting Ultimate Oil Recovery and Its Rate of Production: Incorporating Economic Forces into the Models of M. King Hubbert," The Energy Journal, , vol. 12(2), pages 17-46, April.
    7. Kaiser, Mark J., 2006. "Hydrocarbon production cost functions in the Gulf of Mexico," Energy, Elsevier, vol. 31(12), pages 1726-1747.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nemet, Andreja & Klemeš, Jiří Jaromír & Kravanja, Zdravko, 2013. "Optimising entire lifetime economy of heat exchanger networks," Energy, Elsevier, vol. 57(C), pages 222-235.
    2. Jia-Yue Huang & Yun-Fei Cao & Hui-Ling Zhou & Hong Cao & Bao-Jun Tang & Nan Wang, 2018. "Optimal Investment Timing and Scale Choice of Overseas Oil Projects: A Real Option Approach," Energies, MDPI, vol. 11(11), pages 1-22, October.
    3. Wang, Wenyang & Pang, Xiongqi & Chen, Zhangxin & Chen, Dongxia & Ma, Xinhua & Zhu, Weiping & Zheng, Tianyu & Wu, Keliu & Zhang, Kun & Ma, Kuiyou, 2020. "Improved methods for determining effective sandstone reservoirs and evaluating hydrocarbon enrichment in petroliferous basins," Applied Energy, Elsevier, vol. 261(C).
    4. Silva, L.M.R. & Guedes Soares, C., 2023. "Robust optimization model of an offshore oil production system for cost and pipeline risk of failure," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    5. Cabrales, Sergio & Bautista, Rafael & Benavides, Juan, 2017. "A model to assess the impact of employment policy and subsidized domestic fuel prices on national oil companies," Energy Economics, Elsevier, vol. 68(C), pages 566-578.
    6. Wang, Wenyang & Pang, Xiongqi & Chen, Zhangxin & Chen, Dongxia & Zheng, Tianyu & Luo, Bing & Li, Jing & Yu, Rui, 2019. "Quantitative prediction of oil and gas prospects of the Sinian-Lower Paleozoic in the Sichuan Basin in central China," Energy, Elsevier, vol. 174(C), pages 861-872.
    7. Zhao, Xu & Luo, Dongkun & Xia, Liangyu, 2012. "Modelling optimal production rate with contract effects for international oil development projects," Energy, Elsevier, vol. 45(1), pages 662-668.
    8. Bo Xu & Lianyong Feng & William X. Wei & Yan Hu & Jianliang Wang, 2014. "A Preliminary Forecast of the Production Status of China’s Daqing Oil field from the Perspective of EROI," Sustainability, MDPI, vol. 6(11), pages 1-21, November.
    9. Wang, Wenyang & Pang, Xiongqi & Chen, Zhangxin & Chen, Dongxia & Wang, Yaping & Yang, Xuan & Luo, Bing & Zhang, Wang & Zhang, Xinwen & Li, Changrong & Wang, Qifeng & Li, Caijun, 2021. "Quantitative evaluation of transport efficiency of fault-reservoir composite migration pathway systems in carbonate petroliferous basins," Energy, Elsevier, vol. 222(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chakravorty, Ujjayant & Leach, Andrew & Moreaux, Michel, 2009. ""Twin Peaks" in Energy Prices: A Hotelling Model with Pollution Learning," Working Papers 2009-10, University of Alberta, Department of Economics.
    2. Lee, Shun-Chung & Shih, Li-Hsing, 2010. "Renewable energy policy evaluation using real option model -- The case of Taiwan," Energy Economics, Elsevier, vol. 32(Supplemen), pages 67-78, September.
    3. Jim Bessen, 1997. "Productivity Adjustments and Learning-by-Doing as Human Capital," Working Papers 97-17, Center for Economic Studies, U.S. Census Bureau.
    4. Nemet, Gregory F., 2006. "Beyond the learning curve: factors influencing cost reductions in photovoltaics," Energy Policy, Elsevier, vol. 34(17), pages 3218-3232, November.
    5. Koji Kotani & Makoto Kakinaka, 2017. "Some implications of environmental regulation on social welfare under learning-by-doing of eco-products," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 19(1), pages 121-149, January.
    6. Lohwasser, Richard & Madlener, Reinhard, 2013. "Relating R&D and investment policies to CCS market diffusion through two-factor learning," Energy Policy, Elsevier, vol. 52(C), pages 439-452.
    7. Ziesemer, Thomas & Michaelis, Peter, 2011. "Strategic environmental policy and the accumulation of knowledge," Structural Change and Economic Dynamics, Elsevier, vol. 22(2), pages 180-191, June.
    8. Berglund, Christer & Soderholm, Patrik, 2006. "Modeling technical change in energy system analysis: analyzing the introduction of learning-by-doing in bottom-up energy models," Energy Policy, Elsevier, vol. 34(12), pages 1344-1356, August.
    9. Hart E. Posen & John S. Chen, 2013. "An Advantage of Newness: Vicarious Learning Despite Limited Absorptive Capacity," Organization Science, INFORMS, vol. 24(6), pages 1701-1716, December.
    10. Dosi, Giovanni & Grazzi, Marco & Mathew, Nanditha, 2017. "The cost-quantity relations and the diverse patterns of “learning by doing”: Evidence from India," Research Policy, Elsevier, vol. 46(10), pages 1873-1886.
    11. Christoph Riedl & Victor P. Seidel, 2018. "Learning from Mixed Signals in Online Innovation Communities," Organization Science, INFORMS, vol. 29(6), pages 1010-1032, December.
    12. Méjean, Aurélie & Hope, Chris, 2013. "Supplying synthetic crude oil from Canadian oil sands: A comparative study of the costs and CO2 emissions of mining and in-situ recovery," Energy Policy, Elsevier, vol. 60(C), pages 27-40.
    13. Lecca, Patrizio & McGregor, Peter G. & Swales, Kim J. & Tamba, Marie, 2017. "The Importance of Learning for Achieving the UK's Targets for Offshore Wind," Ecological Economics, Elsevier, vol. 135(C), pages 259-268.
    14. Pan, Xiaojun & Li, Shoude, 2016. "Dynamic optimal control of process–product innovation with learning by doing," European Journal of Operational Research, Elsevier, vol. 248(1), pages 136-145.
    15. Farmer, J. Doyne & Lafond, François, 2016. "How predictable is technological progress?," Research Policy, Elsevier, vol. 45(3), pages 647-665.
    16. Pettersson, Fredrik & Söderholm, Patrik, 2009. "The diffusion of renewable electricity in the presence of climate policy and technology learning: The case of Sweden," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2031-2040, October.
    17. Bramoulle, Yann & Olson, Lars J., 2002. "Pollution Abatement Under Learning By Doing With Heterogeneous Costs," Working Papers 28583, University of Maryland, Department of Agricultural and Resource Economics.
    18. De Cian, Enrica & Buhl, Johannes & Carrara, Samuel & Michela Bevione, Michela & Monetti, Silvia & Berg, Holger, 2016. "Knowledge Creation between Integrated Assessment Models and Initiative-Based Learning - An Interdisciplinary Approach," MITP: Mitigation, Innovation and Transformation Pathways 249784, Fondazione Eni Enrico Mattei (FEEM).
    19. Kumbaroglu, Gürkan & Karali, Nihan & ArIkan, YIldIz, 2008. "CO2, GDP and RET: An aggregate economic equilibrium analysis for Turkey," Energy Policy, Elsevier, vol. 36(7), pages 2694-2708, July.
    20. Alvarez, F. & Cerda, E., 2003. "Learning by doing in a T-period production planning: Analytical solution," European Journal of Operational Research, Elsevier, vol. 150(2), pages 353-369, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:40:y:2012:i:1:p:189-195. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.