The influences of super-critical CO2 saturation on tensile characteristics and failure modes of shales
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2021.119824
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Lyu, Qiao & Long, Xinping & Ranjith, P.G. & Tan, Jingqiang & Kang, Yong & Wang, Zhanghu, 2018. "Experimental investigation on the mechanical properties of a low-clay shale with different adsorption times in sub-/super-critical CO2," Energy, Elsevier, vol. 147(C), pages 1288-1298.
- McGlade, Christophe & Speirs, Jamie & Sorrell, Steve, 2013. "Unconventional gas – A review of regional and global resource estimates," Energy, Elsevier, vol. 55(C), pages 571-584.
- Ikonnikova, Svetlana & Gülen, Gürcan & Browning, John & Tinker, Scott W., 2015. "Profitability of shale gas drilling: A case study of the Fayetteville shale play," Energy, Elsevier, vol. 81(C), pages 382-393.
- Yin, Hong & Zhou, Junping & Xian, Xuefu & Jiang, Yongdong & Lu, Zhaohui & Tan, Jingqiang & Liu, Guojun, 2017. "Experimental study of the effects of sub- and super-critical CO2 saturation on the mechanical characteristics of organic-rich shales," Energy, Elsevier, vol. 132(C), pages 84-95.
- Lu, Yiyu & Chen, Xiayu & Tang, Jiren & Li, Honglian & Zhou, Lei & Han, Shuaibin & Ge, Zhaolong & Xia, Binwei & Shen, Huajian & Zhang, Jing, 2019. "Relationship between pore structure and mechanical properties of shale on supercritical carbon dioxide saturation," Energy, Elsevier, vol. 172(C), pages 270-285.
- Feng, Gan & Kang, Yong & Sun, Ze-dong & Wang, Xiao-chuan & Hu, Yao-qing, 2019. "Effects of supercritical CO2 adsorption on the mechanical characteristics and failure mechanisms of shale," Energy, Elsevier, vol. 173(C), pages 870-882.
- Jiang, Yongdong & Luo, Yahuang & Lu, Yiyu & Qin, Chao & Liu, Hui, 2016. "Effects of supercritical CO2 treatment time, pressure, and temperature on microstructure of shale," Energy, Elsevier, vol. 97(C), pages 173-181.
- Chen, Shangbin & Zhu, Yanming & Wang, Hongyan & Liu, Honglin & Wei, Wei & Fang, Junhua, 2011. "Shale gas reservoir characterisation: A typical case in the southern Sichuan Basin of China," Energy, Elsevier, vol. 36(11), pages 6609-6616.
- Perera, M.S.A. & Ranjith, P.G. & Viete, D.R., 2013. "Effects of gaseous and super-critical carbon dioxide saturation on the mechanical properties of bituminous coal from the Southern Sydney Basin," Applied Energy, Elsevier, vol. 110(C), pages 73-81.
- Middleton, Richard S. & Carey, J. William & Currier, Robert P. & Hyman, Jeffrey D. & Kang, Qinjun & Karra, Satish & Jiménez-Martínez, Joaquín & Porter, Mark L. & Viswanathan, Hari S., 2015. "Shale gas and non-aqueous fracturing fluids: Opportunities and challenges for supercritical CO2," Applied Energy, Elsevier, vol. 147(C), pages 500-509.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Guo, Yide & Huang, Linqi & Li, Xibing, 2023. "Experimental and numerical investigation on the fracture behavior of deep anisotropic shale reservoir under in-situ temperature," Energy, Elsevier, vol. 282(C).
- Yang, Kang & Zhou, Junping & Xian, Xuefu & Zhou, Lei & Zhang, Chengpeng & Tian, Shifeng & Lu, Zhaohui & Zhang, Fengshou, 2022. "Chemical-mechanical coupling effects on the permeability of shale subjected to supercritical CO2-water exposure," Energy, Elsevier, vol. 248(C).
- Su, Erlei & Liang, Yunpei & Chen, Xiangjun & Wang, Zhaofeng & Ni, Xiaoming & Zou, Quanle & Chen, Haidong & Wei, Jiaqi, 2023. "Relationship between pore structure and mechanical properties of bituminous coal under sub-critical and super-critical CO2 treatment," Energy, Elsevier, vol. 280(C).
- Cheng, Qi & Tang, Jiren & Jia, Yunzhong & Lu, Yiyu & Zhang, Chi & Liu, Yanlin & Zhao, Guilin & Liu, Yalu, 2024. "Shale softening induced by CO2 injection in the absence and presence of water: An experimental investigation based on nanoindentation," Energy, Elsevier, vol. 288(C).
- Guo, Yide & Li, Xibing & Huang, Linqi, 2023. "Experimental investigation on the sudden cooling effect of oil-based drilling fluid on the dynamic compressive behavior of deep shale reservoirs," Energy, Elsevier, vol. 282(C).
- Tian, Shifeng & Zhou, Junping & Xian, Xuefu & Gan, Quan & Zhang, Chengpeng & Dong, Zhiqiang & Kuang, Nianjie, 2023. "The impact of supercritical CO2 exposure time on the effective stress law for permeability in shale," Energy, Elsevier, vol. 284(C).
- Guo, Yide & Huang, Linqi & Li, Xibing, 2023. "Experimental investigation of the tensile behavior and acoustic emission characteristics of anisotropic shale under geothermal environment," Energy, Elsevier, vol. 263(PD).
- An, Qiyi & Zhang, Qingsong & Li, Xianghui & Yu, Hao & Yin, Zhanchao & Zhang, Xiao, 2022. "Accounting for dynamic alteration effect of SC-CO2 to assess role of pore structure on rock strength: A comparative study," Energy, Elsevier, vol. 260(C).
- Wang, Chenyu & Geng, Jiabo & Zhang, Dongming & Li, Shujian & Wang, Xiaolei & Li, Qinglin, 2023. "Investigation on damage evolution law of anisotropic shale at different hydraulic pressures," Energy, Elsevier, vol. 282(C).
- Liu, Kouqi & Jin, Zhijun & Zeng, Lianbo & Ozotta, Ogochukwu & Gentzis, Thomas & Ostadhassan, Mehdi, 2023. "Alteration in the mechanical properties of the Bakken during exposure to supercritical CO2," Energy, Elsevier, vol. 262(PB).
- Zepeng, Wang & Zhaolong, Ge & Ruihui, Li & Xianfeng, Liu & Haoming, Wang & Shihui, Gong, 2022. "Effects of acid-based fracturing fluids with variable hydrochloric acid contents on the microstructure of bituminous coal: An experimental study," Energy, Elsevier, vol. 244(PA).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Qin, Chao & Jiang, Yongdong & Luo, Yahuang & Zhou, Junping & Liu, Hao & Song, Xiao & Li, Dong & Zhou, Feng & Xie, Yingliang, 2020. "Effect of supercritical CO2 saturation pressures and temperatures on the methane adsorption behaviours of Longmaxi shale," Energy, Elsevier, vol. 206(C).
- Lu, Yiyu & Chen, Xiayu & Tang, Jiren & Li, Honglian & Zhou, Lei & Han, Shuaibin & Ge, Zhaolong & Xia, Binwei & Shen, Huajian & Zhang, Jing, 2019. "Relationship between pore structure and mechanical properties of shale on supercritical carbon dioxide saturation," Energy, Elsevier, vol. 172(C), pages 270-285.
- Ahmed Fatah & Ziad Bennour & Hisham Ben Mahmud & Raoof Gholami & Md. Mofazzal Hossain, 2020. "A Review on the Influence of CO 2 /Shale Interaction on Shale Properties: Implications of CCS in Shales," Energies, MDPI, vol. 13(12), pages 1-27, June.
- Zhou, Junping & Tian, Shifeng & Zhou, Lei & Xian, Xuefu & Yang, Kang & Jiang, Yongdong & Zhang, Chengpeng & Guo, Yaowen, 2020. "Experimental investigation on the influence of sub- and super-critical CO2 saturation time on the permeability of fractured shale," Energy, Elsevier, vol. 191(C).
- Bai, Bing & Ni, Hong-jian & Shi, Xian & Guo, Xing & Ding, Lu, 2021. "The experimental investigation of effect of supercritical CO2 immersion on mechanical properties and pore structure of shale," Energy, Elsevier, vol. 228(C).
- Yin, Hong & Zhou, Junping & Xian, Xuefu & Jiang, Yongdong & Lu, Zhaohui & Tan, Jingqiang & Liu, Guojun, 2017. "Experimental study of the effects of sub- and super-critical CO2 saturation on the mechanical characteristics of organic-rich shales," Energy, Elsevier, vol. 132(C), pages 84-95.
- Dabbaghi, Ehsan & Ng, Kam, 2024. "Effects of CO2 on the mineralogy, mechanical, and transport properties of rocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
- Mohammad H. Bhuiyan & Nicolaine Agofack & Kamila M. Gawel & Pierre R. Cerasi, 2020. "Micro- and Macroscale Consequences of Interactions between CO 2 and Shale Rocks," Energies, MDPI, vol. 13(5), pages 1-30, March.
- Li, Sihai & Zhang, Shicheng & Xing, Huilin & Zou, Yushi, 2022. "CO2–brine–rock interactions altering the mineralogical, physical, and mechanical properties of carbonate-rich shale oil reservoirs," Energy, Elsevier, vol. 256(C).
- Chunsheng Yu & Xiao Zhao & Qi Jiang & Xiaosha Lin & Hengyuan Gong & Xuanqing Chen, 2022. "Shale Microstructure Characteristics under the Action of Supercritical Carbon Dioxide (Sc-CO 2 )," Energies, MDPI, vol. 15(22), pages 1-9, November.
- Feng, Gan & Kang, Yong & Sun, Ze-dong & Wang, Xiao-chuan & Hu, Yao-qing, 2019. "Effects of supercritical CO2 adsorption on the mechanical characteristics and failure mechanisms of shale," Energy, Elsevier, vol. 173(C), pages 870-882.
- Lyu, Qiao & Long, Xinping & Ranjith, P.G. & Tan, Jingqiang & Kang, Yong & Wang, Zhanghu, 2018. "Experimental investigation on the mechanical properties of a low-clay shale with different adsorption times in sub-/super-critical CO2," Energy, Elsevier, vol. 147(C), pages 1288-1298.
- Choi, Chae-Soon & Kim, Jineon & Song, Jae-Joon, 2021. "Analysis of shale property changes after geochemical interaction under CO2 sequestration conditions," Energy, Elsevier, vol. 214(C).
- Stian Rørheim & Mohammad Hossain Bhuiyan & Andreas Bauer & Pierre Rolf Cerasi, 2021. "On the Effect of CO 2 on Seismic and Ultrasonic Properties: A Novel Shale Experiment," Energies, MDPI, vol. 14(16), pages 1-20, August.
- Guo, Yide & Huang, Linqi & Li, Xibing, 2023. "Experimental investigation of the tensile behavior and acoustic emission characteristics of anisotropic shale under geothermal environment," Energy, Elsevier, vol. 263(PD).
- Yang, Kang & Zhou, Junping & Xian, Xuefu & Zhou, Lei & Zhang, Chengpeng & Tian, Shifeng & Lu, Zhaohui & Zhang, Fengshou, 2022. "Chemical-mechanical coupling effects on the permeability of shale subjected to supercritical CO2-water exposure," Energy, Elsevier, vol. 248(C).
- Yugang Cheng & Mengru Zeng & Zhaohui Lu & Xidong Du & Hong Yin & Liu Yang, 2020. "Effects of Supercritical CO 2 Treatment Temperatures on Mineral Composition, Pore Structure and Functional Groups of Shale: Implications for CO 2 Sequestration," Sustainability, MDPI, vol. 12(9), pages 1-22, May.
- Zhu, Hongjian & Ju, Yiwen & Huang, Cheng & Chen, Fangwen & Chen, Bozhen & Yu, Kun, 2020. "Microcosmic gas adsorption mechanism on clay-organic nanocomposites in a marine shale," Energy, Elsevier, vol. 197(C).
- An, Qiyi & Zhang, Qingsong & Li, Xianghui & Yu, Hao & Yin, Zhanchao & Zhang, Xiao, 2022. "Accounting for dynamic alteration effect of SC-CO2 to assess role of pore structure on rock strength: A comparative study," Energy, Elsevier, vol. 260(C).
- Tunstall, Thomas, 2015. "Iterative Bass Model forecasts for unconventional oil production in the Eagle Ford Shale," Energy, Elsevier, vol. 93(P1), pages 580-588.
More about this item
Keywords
Shale; Supercritical CO2; Brazilian spitting; Failure modes; Bedding planes; Reservoir stimulation;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:221:y:2021:i:c:s0360544221000736. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.