IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v173y2019icp1106-1118.html
   My bibliography  Save this article

Forecasting annual natural gas consumption using socio-economic indicators for making future policies

Author

Listed:
  • Sen, Doruk
  • Günay, M. Erdem
  • Tunç, K.M. Murat

Abstract

Natural gas is a foreign-dependent source of energy in many countries and a rapid increase of its consumption is mainly associated with the increase of living standards and needs. In this work, Turkey was taken as a case study with high degree of foreign dependence of energy, and the future natural gas consumption was predicted by several different multiple regression models using socio-economic indicators as the descriptor variables. Among these, gross domestic product and inflation rate were found to be the only significant ones for this prediction. Next, three different projections for the future values of the significant descriptor variables were tested, and the natural gas consumption was predicted to rise gradually in the range 1.3 ± 0.2 billion m3 per year reaching to a consumption of 64.0 ± 3.5 billion m3 in the year 2025. It was then discussed that this additional natural gas can be compensated by utilizing local lignite sources or by starting a nuclear energy program although these two methods to reduce the future natural gas consumption have some conflictions with the general European energy matrix and environmental politics. Thus, it was concluded that resuming the wind and solar-based electricity generation programs can be considered as a more reasonable option.

Suggested Citation

  • Sen, Doruk & Günay, M. Erdem & Tunç, K.M. Murat, 2019. "Forecasting annual natural gas consumption using socio-economic indicators for making future policies," Energy, Elsevier, vol. 173(C), pages 1106-1118.
  • Handle: RePEc:eee:energy:v:173:y:2019:i:c:p:1106-1118
    DOI: 10.1016/j.energy.2019.02.130
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219303299
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.02.130?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Amarawickrama, Himanshu A. & Hunt, Lester C., 2008. "Electricity demand for Sri Lanka: A time series analysis," Energy, Elsevier, vol. 33(5), pages 724-739.
    2. Khan, Muhammad Arshad, 2015. "Modelling and forecasting the demand for natural gas in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1145-1159.
    3. Oliver, Ronan & Duffy, Aidan & Enright, Bernard & O'Connor, Rodger, 2017. "Forecasting peak-day consumption for year-ahead management of natural gas networks," Utilities Policy, Elsevier, vol. 44(C), pages 1-11.
    4. Wadud, Zia & Dey, Himadri S. & Kabir, Md. Ashfanoor & Khan, Shahidul I., 2011. "Modeling and forecasting natural gas demand in Bangladesh," Energy Policy, Elsevier, vol. 39(11), pages 7372-7380.
    5. He, Yongxiu & Jiao, Jie & Chen, Qian & Ge, Sifan & Chang, Yan & Xu, Yang, 2017. "Urban long term electricity demand forecast method based on system dynamics of the new economic normal: The case of Tianjin," Energy, Elsevier, vol. 133(C), pages 9-22.
    6. Vondrácek, Jirí & Pelikán, Emil & Konár, Ondrej & Cermáková, Jana & Eben, Krystof & Malý, Marek & Brabec, Marek, 2008. "A statistical model for the estimation of natural gas consumption," Applied Energy, Elsevier, vol. 85(5), pages 362-370, May.
    7. Li, Junchen & Dong, Xiucheng & Shangguan, Jianxin & Hook, Mikael, 2011. "Forecasting the growth of China’s natural gas consumption," Energy, Elsevier, vol. 36(3), pages 1380-1385.
    8. Marek Brabec & Ondřej Konár & Marek Malý & Emil Pelikán & Jiří Vondráček, 2009. "A statistical model for natural gas standardized load profiles," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(1), pages 123-139, February.
    9. Huntington, Hillard G., 2007. "Industrial natural gas consumption in the United States: An empirical model for evaluating future trends," Energy Economics, Elsevier, vol. 29(4), pages 743-759, July.
    10. Szoplik, Jolanta, 2015. "Forecasting of natural gas consumption with artificial neural networks," Energy, Elsevier, vol. 85(C), pages 208-220.
    11. Azadeh, A. & Asadzadeh, S.M. & Ghanbari, A., 2010. "An adaptive network-based fuzzy inference system for short-term natural gas demand estimation: Uncertain and complex environments," Energy Policy, Elsevier, vol. 38(3), pages 1529-1536, March.
    12. Melikoglu, Mehmet, 2013. "Vision 2023: Forecasting Turkey's natural gas demand between 2013 and 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 393-400.
    13. Welsch, Heinz & Biermann, Philipp, 2014. "Fukushima and the preference for nuclear power in Europe: Evidence from subjective well-being data," Ecological Economics, Elsevier, vol. 108(C), pages 171-179.
    14. Ang, B.W. & Wang, H. & Ma, Xiaojing, 2017. "Climatic influence on electricity consumption: The case of Singapore and Hong Kong," Energy, Elsevier, vol. 127(C), pages 534-543.
    15. Yoo, Seung-Hoon & Lim, Hea-Jin & Kwak, Seung-Jun, 2009. "Estimating the residential demand function for natural gas in Seoul with correction for sample selection bias," Applied Energy, Elsevier, vol. 86(4), pages 460-465, April.
    16. Kaboli, S. Hr. Aghay & Selvaraj, J. & Rahim, N.A., 2016. "Long-term electric energy consumption forecasting via artificial cooperative search algorithm," Energy, Elsevier, vol. 115(P1), pages 857-871.
    17. Zhu, L. & Li, M.S. & Wu, Q.H. & Jiang, L., 2015. "Short-term natural gas demand prediction based on support vector regression with false neighbours filtered," Energy, Elsevier, vol. 80(C), pages 428-436.
    18. Brabec, Marek & Konár, Ondrej & Pelikán, Emil & Malý, Marek, 2008. "A nonlinear mixed effects model for the prediction of natural gas consumption by individual customers," International Journal of Forecasting, Elsevier, vol. 24(4), pages 659-678.
    19. Jiang, BinBin & Wenying, Chen & Yuefeng, Yu & Lemin, Zeng & Victor, David, 2008. "The future of natural gas consumption in Beijing, Guangdong and Shanghai: An assessment utilizing MARKAL," Energy Policy, Elsevier, vol. 36(9), pages 3286-3299, September.
    20. Potocnik, Primoz & Thaler, Marko & Govekar, Edvard & Grabec, Igor & Poredos, Alojz, 2007. "Forecasting risks of natural gas consumption in Slovenia," Energy Policy, Elsevier, vol. 35(8), pages 4271-4282, August.
    21. Panapakidis, Ioannis P. & Dagoumas, Athanasios S., 2017. "Day-ahead natural gas demand forecasting based on the combination of wavelet transform and ANFIS/genetic algorithm/neural network model," Energy, Elsevier, vol. 118(C), pages 231-245.
    22. Nawaz, Saima & Iqbal, Nasir & Anwar, Saba, 2014. "Modelling electricity demand using the STAR (Smooth Transition Auto-Regressive) model in Pakistan," Energy, Elsevier, vol. 78(C), pages 535-542.
    23. Sanchez-Ubeda, Eugenio Fco. & Berzosa, Ana, 2007. "Modeling and forecasting industrial end-use natural gas consumption," Energy Economics, Elsevier, vol. 29(4), pages 710-742, July.
    24. Douglas B. Reynolds & Marek Kolodziej, 2009. "North American Natural Gas Supply Forecast: The Hubbert Method Including the Effects of Institutions," Energies, MDPI, vol. 2(2), pages 1-38, May.
    25. Bianco, Vincenzo & Scarpa, Federico & Tagliafico, Luca A., 2014. "Scenario analysis of nonresidential natural gas consumption in Italy," Applied Energy, Elsevier, vol. 113(C), pages 392-403.
    26. Karadede, Yusuf & Ozdemir, Gultekin & Aydemir, Erdal, 2017. "Breeder hybrid algorithm approach for natural gas demand forecasting model," Energy, Elsevier, vol. 141(C), pages 1269-1284.
    27. Aydinalp-Koksal, Merih & Ugursal, V. Ismet, 2008. "Comparison of neural network, conditional demand analysis, and engineering approaches for modeling end-use energy consumption in the residential sector," Applied Energy, Elsevier, vol. 85(4), pages 271-296, April.
    28. Bianco, Vincenzo & Manca, Oronzio & Nardini, Sergio, 2009. "Electricity consumption forecasting in Italy using linear regression models," Energy, Elsevier, vol. 34(9), pages 1413-1421.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gao, Yanyan & Zheng, Jianghuai, 2022. "Clearing the air through pipes? An evaluation of the air pollution reduction effect of China's natural gas pipeline projects," Energy Policy, Elsevier, vol. 160(C).
    2. Gvozdenac Urošević, Branka D. & Đozić, Damir J., 2021. "Testing long-term energy policy targets by means of artificial neural network," Energy, Elsevier, vol. 227(C).
    3. Hafezi, Reza & Akhavan, AmirNaser & Pakseresht, Saeed & A. Wood, David, 2021. "Global natural gas demand to 2025: A learning scenario development model," Energy, Elsevier, vol. 224(C).
    4. Sen, Doruk & Tunç, K.M. Murat & Günay, M. Erdem, 2021. "Forecasting electricity consumption of OECD countries: A global machine learning modeling approach," Utilities Policy, Elsevier, vol. 70(C).
    5. Qiao, Weibiao & Liu, Wei & Liu, Enbin, 2021. "A combination model based on wavelet transform for predicting the difference between monthly natural gas production and consumption of U.S," Energy, Elsevier, vol. 235(C).
    6. Li, Fengyun & Li, Xingmei, 2022. "An empirical analysis on regional natural gas market of China from a spatial pattern and social network perspective," Energy, Elsevier, vol. 244(PA).
    7. Lu, Hongfang & Ma, Xin & Azimi, Mohammadamin, 2020. "US natural gas consumption prediction using an improved kernel-based nonlinear extension of the Arps decline model," Energy, Elsevier, vol. 194(C).
    8. Hasdi Aimon & Anggi Putri Kurniadi & Mike Triani, 2022. "Determination of Natural Gas Consumption and Carbon Emission in Natural Gas Supplying Countries in Asia Pacific," International Journal of Energy Economics and Policy, Econjournals, vol. 12(6), pages 96-101, November.
    9. Yousaf Raza, Muhammad & Lin, Boqiang, 2022. "Natural gas consumption, energy efficiency and low carbon transition in Pakistan," Energy, Elsevier, vol. 240(C).
    10. Bian, Jiang & Cao, Xuewen & Teng, Lin & Sun, Yuan & Gao, Song, 2019. "Effects of inlet parameters on the supersonic condensation and swirling characteristics of binary natural gas mixture," Energy, Elsevier, vol. 188(C).
    11. Palanisamy Manigandan & MD Shabbir Alam & Majed Alharthi & Uzma Khan & Kuppusamy Alagirisamy & Duraisamy Pachiyappan & Abdul Rehman, 2021. "Forecasting Natural Gas Production and Consumption in United States-Evidence from SARIMA and SARIMAX Models," Energies, MDPI, vol. 14(19), pages 1-17, September.
    12. Karakurt, Izzet, 2021. "Modelling and forecasting the oil consumptions of the BRICS-T countries," Energy, Elsevier, vol. 220(C).
    13. Ding, Lili & Zhao, Zhongchao & Wang, Lei, 2022. "Probability density forecasts for natural gas demand in China: Do mixed-frequency dynamic factors matter?," Applied Energy, Elsevier, vol. 312(C).
    14. Ayşe Özmen, 2023. "Sparse regression modeling for short- and long‐term natural gas demand prediction," Annals of Operations Research, Springer, vol. 322(2), pages 921-946, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jean Gaston Tamba & Salom Ndjakomo Essiane & Emmanuel Flavian Sapnken & Francis Djanna Koffi & Jean Luc Nsouand l & Bozidar Soldo & Donatien Njomo, 2018. "Forecasting Natural Gas: A Literature Survey," International Journal of Energy Economics and Policy, Econjournals, vol. 8(3), pages 216-249.
    2. Soldo, Božidar, 2012. "Forecasting natural gas consumption," Applied Energy, Elsevier, vol. 92(C), pages 26-37.
    3. Ravnik, J. & Hriberšek, M., 2019. "A method for natural gas forecasting and preliminary allocation based on unique standard natural gas consumption profiles," Energy, Elsevier, vol. 180(C), pages 149-162.
    4. Potočnik, Primož & Soldo, Božidar & Šimunović, Goran & Šarić, Tomislav & Jeromen, Andrej & Govekar, Edvard, 2014. "Comparison of static and adaptive models for short-term residential natural gas forecasting in Croatia," Applied Energy, Elsevier, vol. 129(C), pages 94-103.
    5. Debnath, Kumar Biswajit & Mourshed, Monjur, 2018. "Forecasting methods in energy planning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 297-325.
    6. Szoplik, Jolanta, 2015. "Forecasting of natural gas consumption with artificial neural networks," Energy, Elsevier, vol. 85(C), pages 208-220.
    7. Beyca, Omer Faruk & Ervural, Beyzanur Cayir & Tatoglu, Ekrem & Ozuyar, Pinar Gokcin & Zaim, Selim, 2019. "Using machine learning tools for forecasting natural gas consumption in the province of Istanbul," Energy Economics, Elsevier, vol. 80(C), pages 937-949.
    8. Song, Jiancai & Zhang, Liyi & Jiang, Qingling & Ma, Yunpeng & Zhang, Xinxin & Xue, Guixiang & Shen, Xingliang & Wu, Xiangdong, 2022. "Estimate the daily consumption of natural gas in district heating system based on a hybrid seasonal decomposition and temporal convolutional network model," Applied Energy, Elsevier, vol. 309(C).
    9. Liu, Guixian & Dong, Xiucheng & Jiang, Qingzhe & Dong, Cong & Li, Jiaman, 2018. "Natural gas consumption of urban households in China and corresponding influencing factors," Energy Policy, Elsevier, vol. 122(C), pages 17-26.
    10. Sen, Doruk & Tunç, K.M. Murat & Günay, M. Erdem, 2021. "Forecasting electricity consumption of OECD countries: A global machine learning modeling approach," Utilities Policy, Elsevier, vol. 70(C).
    11. Guo-Feng Fan & An Wang & Wei-Chiang Hong, 2018. "Combining Grey Model and Self-Adapting Intelligent Grey Model with Genetic Algorithm and Annual Share Changes in Natural Gas Demand Forecasting," Energies, MDPI, vol. 11(7), pages 1-21, June.
    12. Ergun Yukseltan & Ahmet Yucekaya & Ayse Humeyra Bilge & Esra Agca Aktunc, 2020. "Forecasting Models for Daily Natural Gas Consumption Considering Periodic Variations and Demand Segregation," Papers 2003.13385, arXiv.org.
    13. Li, Wei & Lu, Can, 2019. "The multiple effectiveness of state natural gas consumption constraint policies for achieving sustainable development targets in China," Applied Energy, Elsevier, vol. 235(C), pages 685-698.
    14. Yukseltan, Ergun & Yucekaya, Ahmet & Bilge, Ayse Humeyra & Agca Aktunc, Esra, 2021. "Forecasting models for daily natural gas consumption considering periodic variations and demand segregation," Socio-Economic Planning Sciences, Elsevier, vol. 74(C).
    15. Chen, Ying & Koch, Thorsten & Zakiyeva, Nazgul & Zhu, Bangzhu, 2020. "Modeling and forecasting the dynamics of the natural gas transmission network in Germany with the demand and supply balance constraint," Applied Energy, Elsevier, vol. 278(C).
    16. Lu, Hongfang & Ma, Xin & Azimi, Mohammadamin, 2020. "US natural gas consumption prediction using an improved kernel-based nonlinear extension of the Arps decline model," Energy, Elsevier, vol. 194(C).
    17. Karadede, Yusuf & Ozdemir, Gultekin & Aydemir, Erdal, 2017. "Breeder hybrid algorithm approach for natural gas demand forecasting model," Energy, Elsevier, vol. 141(C), pages 1269-1284.
    18. Soltanisarvestani, A. & Safavi, A.A., 2021. "Modeling unaccounted-for gas among residential natural gas consumers using a comprehensive fuzzy cognitive map," Utilities Policy, Elsevier, vol. 72(C).
    19. Ding, Song, 2018. "A novel self-adapting intelligent grey model for forecasting China's natural-gas demand," Energy, Elsevier, vol. 162(C), pages 393-407.
    20. Su, Huai & Zio, Enrico & Zhang, Jinjun & Xu, Mingjing & Li, Xueyi & Zhang, Zongjie, 2019. "A hybrid hourly natural gas demand forecasting method based on the integration of wavelet transform and enhanced Deep-RNN model," Energy, Elsevier, vol. 178(C), pages 585-597.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:173:y:2019:i:c:p:1106-1118. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.