IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v35y2007i8p4271-4282.html
   My bibliography  Save this article

Forecasting risks of natural gas consumption in Slovenia

Author

Listed:
  • Potocnik, Primoz
  • Thaler, Marko
  • Govekar, Edvard
  • Grabec, Igor
  • Poredos, Alojz

Abstract

No abstract is available for this item.

Suggested Citation

  • Potocnik, Primoz & Thaler, Marko & Govekar, Edvard & Grabec, Igor & Poredos, Alojz, 2007. "Forecasting risks of natural gas consumption in Slovenia," Energy Policy, Elsevier, vol. 35(8), pages 4271-4282, August.
  • Handle: RePEc:eee:enepol:v:35:y:2007:i:8:p:4271-4282
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(07)00085-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Makkonen, Simo & Lahdelma, Risto, 2006. "Non-convex power plant modelling in energy optimisation," European Journal of Operational Research, Elsevier, vol. 171(3), pages 1113-1126, June.
    2. Sailor, David J. & Muñoz, J.Ricardo, 1997. "Sensitivity of electricity and natural gas consumption to climate in the U.S.A.—Methodology and results for eight states," Energy, Elsevier, vol. 22(10), pages 987-998.
    3. I. Grabec, 2005. "Extraction of physical laws from joint experimental data," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 48(2), pages 279-289, November.
    4. Pardo, Angel & Meneu, Vicente & Valor, Enric, 2002. "Temperature and seasonality influences on Spanish electricity load," Energy Economics, Elsevier, vol. 24(1), pages 55-70, January.
    5. Darbellay, Georges A. & Slama, Marek, 2000. "Forecasting the short-term demand for electricity: Do neural networks stand a better chance?," International Journal of Forecasting, Elsevier, vol. 16(1), pages 71-83.
    6. Thaler, Marko & Grabec, Igor & Poredoš, Alojz, 2005. "Prediction of energy consumption and risk of excess demand in a distribution system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 355(1), pages 46-53.
    7. Dotzauer, Erik, 2002. "Simple model for prediction of loads in district-heating systems," Applied Energy, Elsevier, vol. 73(3-4), pages 277-284, November.
    8. Rong, Aiying & Hakonen, Henri & Lahdelma, Risto, 2006. "An efficient linear model and optimisation algorithm for multi-site combined heat and power production," European Journal of Operational Research, Elsevier, vol. 168(2), pages 612-632, January.
    9. Mirasgedis, S. & Sarafidis, Y. & Georgopoulou, E. & Lalas, D.P. & Moschovits, M. & Karagiannis, F. & Papakonstantinou, D., 2006. "Models for mid-term electricity demand forecasting incorporating weather influences," Energy, Elsevier, vol. 31(2), pages 208-227.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Szoplik, Jolanta, 2015. "Forecasting of natural gas consumption with artificial neural networks," Energy, Elsevier, vol. 85(C), pages 208-220.
    2. Jean Gaston Tamba & Salom Ndjakomo Essiane & Emmanuel Flavian Sapnken & Francis Djanna Koffi & Jean Luc Nsouand l & Bozidar Soldo & Donatien Njomo, 2018. "Forecasting Natural Gas: A Literature Survey," International Journal of Energy Economics and Policy, Econjournals, vol. 8(3), pages 216-249.
    3. Sen, Doruk & Günay, M. Erdem & Tunç, K.M. Murat, 2019. "Forecasting annual natural gas consumption using socio-economic indicators for making future policies," Energy, Elsevier, vol. 173(C), pages 1106-1118.
    4. dos Santos, Sidney Pereira & Eugenio Leal, José & Oliveira, Fabrício, 2011. "The development of a natural gas transportation logistics management system," Energy Policy, Elsevier, vol. 39(9), pages 4774-4784, September.
    5. Soldo, Božidar, 2012. "Forecasting natural gas consumption," Applied Energy, Elsevier, vol. 92(C), pages 26-37.
    6. Ravnik, J. & Hriberšek, M., 2019. "A method for natural gas forecasting and preliminary allocation based on unique standard natural gas consumption profiles," Energy, Elsevier, vol. 180(C), pages 149-162.
    7. Chen, Ying & Koch, Thorsten & Zakiyeva, Nazgul & Zhu, Bangzhu, 2020. "Modeling and forecasting the dynamics of the natural gas transmission network in Germany with the demand and supply balance constraint," Applied Energy, Elsevier, vol. 278(C).
    8. Kovačič, Miha & Šarler, Božidar, 2014. "Genetic programming prediction of the natural gas consumption in a steel plant," Energy, Elsevier, vol. 66(C), pages 273-284.
    9. Brkic, Dejan, 2009. "Serbian gas sector in the spotlight of oil and gas agreement with Russia," Energy Policy, Elsevier, vol. 37(5), pages 1925-1938, May.
    10. Potočnik, Primož & Soldo, Božidar & Šimunović, Goran & Šarić, Tomislav & Jeromen, Andrej & Govekar, Edvard, 2014. "Comparison of static and adaptive models for short-term residential natural gas forecasting in Croatia," Applied Energy, Elsevier, vol. 129(C), pages 94-103.
    11. Ahmet Goncu & Mehmet Oguz Karahan & Tolga Umut Kuzubas, 2019. "Forecasting Daily Residential Natural Gas Consumption: A Dynamic Temperature Modelling Approach," Bogazici Journal, Review of Social, Economic and Administrative Studies, Bogazici University, Department of Economics, vol. 33(1), pages 1-22.
    12. Zhu, L. & Li, M.S. & Wu, Q.H. & Jiang, L., 2015. "Short-term natural gas demand prediction based on support vector regression with false neighbours filtered," Energy, Elsevier, vol. 80(C), pages 428-436.
    13. M. Brabec & O. Kon�r & M. Malý & I. Kasanický & E. Pelik�n, 2015. "Statistical models for disaggregation and reaggregation of natural gas consumption data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(5), pages 921-937, May.
    14. Mustafa Akpinar & M. Fatih Adak & Nejat Yumusak, 2017. "Day-Ahead Natural Gas Demand Forecasting Using Optimized ABC-Based Neural Network with Sliding Window Technique: The Case Study of Regional Basis in Turkey," Energies, MDPI, vol. 10(6), pages 1-20, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yau, Y.H. & Pean, H.L., 2011. "The climate change impact on air conditioner system and reliability in Malaysia—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4939-4949.
    2. Miller, J. Isaac & Nam, Kyungsik, 2022. "Modeling peak electricity demand: A semiparametric approach using weather-driven cross-temperature response functions," Energy Economics, Elsevier, vol. 114(C).
    3. Jaume Rosselló Nadal & Mohcine Bakhat, 2009. "A new approach to estimating tourism-induced electricity consumption," CRE Working Papers (Documents de treball del CRE) 2009/6, Centre de Recerca Econòmica (UIB ·"Sa Nostra").
    4. Mestekemper, Thomas & Kauermann, Göran & Smith, Michael S., 2013. "A comparison of periodic autoregressive and dynamic factor models in intraday energy demand forecasting," International Journal of Forecasting, Elsevier, vol. 29(1), pages 1-12.
    5. Hirano, Y. & Fujita, T., 2012. "Evaluation of the impact of the urban heat island on residential and commercial energy consumption in Tokyo," Energy, Elsevier, vol. 37(1), pages 371-383.
    6. Wang, Yaoping & Bielicki, Jeffrey M., 2018. "Acclimation and the response of hourly electricity loads to meteorological variables," Energy, Elsevier, vol. 142(C), pages 473-485.
    7. Bakhat, Mohcine & Rosselló, Jaume, 2011. "Estimation of tourism-induced electricity consumption: The case study of Balearics Islands, Spain," Energy Economics, Elsevier, vol. 33(3), pages 437-444, May.
    8. Figueiredo, Nuno Carvalho & Silva, Patrícia Pereira da & Bunn, Derek, 2016. "Weather and market specificities in the regional transmission of renewable energy price effects," Energy, Elsevier, vol. 114(C), pages 188-200.
    9. Thatcher, Marcus J., 2007. "Modelling changes to electricity demand load duration curves as a consequence of predicted climate change for Australia," Energy, Elsevier, vol. 32(9), pages 1647-1659.
    10. Do, Linh Phuong Catherine & Lin, Kuan-Heng & Molnár, Peter, 2016. "Electricity consumption modelling: A case of Germany," Economic Modelling, Elsevier, vol. 55(C), pages 92-101.
    11. OrtizBeviá, M.J. & RuizdeElvira, A. & Alvarez-García, F.J., 2014. "The influence of meteorological variability on the mid-term evolution of the electricity load," Energy, Elsevier, vol. 76(C), pages 850-856.
    12. Pilli-Sihvola, Karoliina & Aatola, Piia & Ollikainen, Markku & Tuomenvirta, Heikki, 2010. "Climate change and electricity consumption--Witnessing increasing or decreasing use and costs?," Energy Policy, Elsevier, vol. 38(5), pages 2409-2419, May.
    13. repec:hum:wpaper:sfb649dp2012-067 is not listed on IDEAS
    14. Hu, Junjie & López Cabrera, Brenda & Melzer, Awdesch, 2021. "Advanced statistical learning on short term load process forecasting," IRTG 1792 Discussion Papers 2021-020, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    15. Rong, Aiying & Lahdelma, Risto, 2017. "An efficient model and algorithm for the transmission-constrained multi-site combined heat and power system," European Journal of Operational Research, Elsevier, vol. 258(3), pages 1106-1117.
    16. Yu, William & Jamasb, Tooraj & Pollitt, Michael, 2009. "Does weather explain cost and quality performance? An analysis of UK electricity distribution companies," Energy Policy, Elsevier, vol. 37(11), pages 4177-4188, November.
    17. Psiloglou, B.E. & Giannakopoulos, C. & Majithia, S. & Petrakis, M., 2009. "Factors affecting electricity demand in Athens, Greece and London, UK: A comparative assessment," Energy, Elsevier, vol. 34(11), pages 1855-1863.
    18. Cancelo, José Ramón & Espasa, Antoni & Grafe, Rosmarie, 2008. "Forecasting the electricity load from one day to one week ahead for the Spanish system operator," International Journal of Forecasting, Elsevier, vol. 24(4), pages 588-602.
    19. Chang, Yoosoon & Kim, Chang Sik & Miller, J. Isaac & Park, Joon Y. & Park, Sungkeun, 2016. "A new approach to modeling the effects of temperature fluctuations on monthly electricity demand," Energy Economics, Elsevier, vol. 60(C), pages 206-216.
    20. Chabouni, Naima & Belarbi, Yacine & Benhassine, Wassim, 2020. "Electricity load dynamics, temperature and seasonality Nexus in Algeria," Energy, Elsevier, vol. 200(C).
    21. Janusz Sowinski, 2021. "The Impact of the Selection of Exogenous Variables in the ANFIS Model on the Results of the Daily Load Forecast in the Power Company," Energies, MDPI, vol. 14(2), pages 1-18, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:35:y:2007:i:8:p:4271-4282. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.