IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v58y2009i1p123-139.html
   My bibliography  Save this article

A statistical model for natural gas standardized load profiles

Author

Listed:
  • Marek Brabec
  • Ondřej Konár
  • Marek Malý
  • Emil Pelikán
  • Jiří Vondráček

Abstract

Summary. We present a statistical model for construction and application of standardized load profiles. Standardized load profile curves give a typical natural gas consumption pattern throughout a year in various time resolutions. Our semiparametric regression model uses three types of information, constant characteristics of an individual customer, individual historical consumption and time varying explanatory variables, both to describe typical trend and to correct for departure of current conditions from normal. The model's multiplicative structure allows for convenient separation of individual‐specific and common time varying parts. Although corrections are parametric, no substantial information about the typical consumption trend is available, so it is modelled non‐parametrically. Corrections for temperature effects are non‐linear; hence we deal with them through an obvious extension of the generalized additive model framework.

Suggested Citation

  • Marek Brabec & Ondřej Konár & Marek Malý & Emil Pelikán & Jiří Vondráček, 2009. "A statistical model for natural gas standardized load profiles," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(1), pages 123-139, February.
  • Handle: RePEc:bla:jorssc:v:58:y:2009:i:1:p:123-139
    DOI: 10.1111/j.1467-9876.2008.00636.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9876.2008.00636.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9876.2008.00636.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Riddell, A. G. & Manson, K., 1996. "Parametrisation of domestic load profiles," Applied Energy, Elsevier, vol. 54(3), pages 199-210, July.
    2. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521785167, September.
    3. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521780506, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jean Gaston Tamba & Salom Ndjakomo Essiane & Emmanuel Flavian Sapnken & Francis Djanna Koffi & Jean Luc Nsouand l & Bozidar Soldo & Donatien Njomo, 2018. "Forecasting Natural Gas: A Literature Survey," International Journal of Energy Economics and Policy, Econjournals, vol. 8(3), pages 216-249.
    2. Marta P. Fernandes & Joaquim L. Viegas & Susana M. Vieira & João M. C. Sousa, 2017. "Segmentation of Residential Gas Consumers Using Clustering Analysis," Energies, MDPI, vol. 10(12), pages 1-26, December.
    3. Sen, Doruk & Günay, M. Erdem & Tunç, K.M. Murat, 2019. "Forecasting annual natural gas consumption using socio-economic indicators for making future policies," Energy, Elsevier, vol. 173(C), pages 1106-1118.
    4. Soltanisarvestani, A. & Safavi, A.A., 2021. "Modeling unaccounted-for gas among residential natural gas consumers using a comprehensive fuzzy cognitive map," Utilities Policy, Elsevier, vol. 72(C).
    5. Sarah E. Heaps & Malcolm Farrow & Kevin J. Wilson, 2020. "Identifying the effect of public holidays on daily demand for gas," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 471-492, February.
    6. J. M. Azaïs & S. Bercu & J. C. Fort & A. Lagnoux & P. Lé, 2010. "Simultaneous confidence bands in curve prediction applied to load curves," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(5), pages 889-904, November.
    7. M. Brabec & O. Kon�r & M. Malý & I. Kasanický & E. Pelik�n, 2015. "Statistical models for disaggregation and reaggregation of natural gas consumption data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(5), pages 921-937, May.
    8. Soldo, Božidar, 2012. "Forecasting natural gas consumption," Applied Energy, Elsevier, vol. 92(C), pages 26-37.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Brabec & O. Kon�r & M. Malý & I. Kasanický & E. Pelik�n, 2015. "Statistical models for disaggregation and reaggregation of natural gas consumption data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(5), pages 921-937, May.
    2. Zanin, Luca & Marra, Giampiero, 2012. "Assessing the functional relationship between CO2 emissions and economic development using an additive mixed model approach," Economic Modelling, Elsevier, vol. 29(4), pages 1328-1337.
    3. Ni, Xiao & Zhang, Hao Helen & Zhang, Daowen, 2009. "Automatic model selection for partially linear models," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2100-2111, October.
    4. Proietti, Tommaso, 2010. "Trend Estimation," MPRA Paper 21607, University Library of Munich, Germany.
    5. Otto-Sobotka, Fabian & Salvati, Nicola & Ranalli, Maria Giovanna & Kneib, Thomas, 2019. "Adaptive semiparametric M-quantile regression," Econometrics and Statistics, Elsevier, vol. 11(C), pages 116-129.
    6. Javier Parada Gómez Urquiza & Alejandro López-Feldman, 2013. "Poverty dynamics in rural Mexico: What does the future hold?," Ensayos Revista de Economia, Universidad Autonoma de Nuevo Leon, Facultad de Economia, vol. 0(2), pages 55-74, November.
    7. Bethany Everett & David Rehkopf & Richard Rogers, 2013. "The Nonlinear Relationship Between Education and Mortality: An Examination of Cohort, Race/Ethnic, and Gender Differences," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 32(6), pages 893-917, December.
    8. Tatiyana V. Apanasovich & David Ruppert & Joanne R. Lupton & Natasa Popovic & Nancy D. Turner & Robert S. Chapkin & Raymond J. Carroll, 2008. "Aberrant Crypt Foci and Semiparametric Modeling of Correlated Binary Data," Biometrics, The International Biometric Society, vol. 64(2), pages 490-500, June.
    9. Eduardo L. Montoya & Wendy Meiring, 2016. "An F-type test for detecting departure from monotonicity in a functional linear model," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(2), pages 322-337, June.
    10. Yu, Jun, 2012. "A semiparametric stochastic volatility model," Journal of Econometrics, Elsevier, vol. 167(2), pages 473-482.
    11. Timothy K.M. Beatty & Erling Røed Larsen, 2005. "Using Engel curves to estimate bias in the Canadian CPI as a cost of living index," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 38(2), pages 482-499, May.
    12. Mestekemper, Thomas & Windmann, Michael & Kauermann, Göran, 2010. "Functional hourly forecasting of water temperature," International Journal of Forecasting, Elsevier, vol. 26(4), pages 684-699, October.
    13. Naschold, Felix, 2012. "“The Poor Stay Poor”: Household Asset Poverty Traps in Rural Semi-Arid India," World Development, Elsevier, vol. 40(10), pages 2033-2043.
    14. Arthur Charpentier & Emmanuel Flachaire & Antoine Ly, 2017. "Econom\'etrie et Machine Learning," Papers 1708.06992, arXiv.org, revised Mar 2018.
    15. Jaroslaw Harezlak & Louise M. Ryan & Jay N. Giedd & Nicholas Lange, 2005. "Individual and Population Penalized Regression Splines for Accelerated Longitudinal Designs," Biometrics, The International Biometric Society, vol. 61(4), pages 1037-1048, December.
    16. Hyunju Son & Youyi Fong, 2021. "Fast grid search and bootstrap‐based inference for continuous two‐phase polynomial regression models," Environmetrics, John Wiley & Sons, Ltd., vol. 32(3), May.
    17. Welham, S.J. & Thompson, R., 2009. "A note on bimodality in the log-likelihood function for penalized spline mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 920-931, February.
    18. Michael Wegener & Göran Kauermann, 2017. "Forecasting in nonlinear univariate time series using penalized splines," Statistical Papers, Springer, vol. 58(3), pages 557-576, September.
    19. Dlugosz, Stephan & Mammen, Enno & Wilke, Ralf A., 2017. "Generalized partially linear regression with misclassified data and an application to labour market transitions," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 145-159.
    20. Bernhard Baumgartner & Daniel Guhl & Thomas Kneib & Winfried J. Steiner, 2018. "Flexible estimation of time-varying effects for frequently purchased retail goods: a modeling approach based on household panel data," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(4), pages 837-873, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:58:y:2009:i:1:p:123-139. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.